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About the National Science Foundation 
The National Science Foundation (NSF) is an independent 
federal agency created by Congress in 1950 “to promote 
the progress of science; to advance the national health, 
prosperity, and welfare; to secure the national defense...” 
NSF is vital because it supports basic research and 
people to create knowledge that transforms the future. 
This type of support:

→  Is a primary driver of the U.S. economy;
→  Enhances the nation’s security;
→  Advances knowledge to sustain global leadership.
 

With an annual budget of $8.5 billion (FY 2021), NSF 
is the funding source for approximately 25 percent of 
all federally supported basic research conducted by 
America’s colleges and universities. In many fields 
such as mathematics, computer science and the social 
sciences, NSF is the major source of federal backing.

About the Deutsche Forschungsgemeinschaft 
(DFG, German Research Foundation)  
The DFG is the central, independent research funding 
organization in Germany. It serves all branches of science 
and the humanities by funding research projects at 
universities and other research institutions.

The DFG promotes excellence by selecting the best 
research projects on a competitive basis and facilitating 
national and international collaboration among 
researchers. Its mandate also includes encouraging the 
advancement and training of early career researchers, 
promoting gender equality in the German scientific and 
academic communities, providing scientific policy advice, 
and fostering relations between the research community 
and society and the private sector.

The DFG is an association under private law. Its 
member organizations include research universities, 
non-university research institutions, such as the Max 
Planck Society, Fraunhofer, the Helmholtz Association 
and the Leibniz Association, the academies of sciences 
and humanities, and a number of scientific associations. 
The DFG has a current annual budget of € 3.3 billion, 
provided primarily by the German federal government (69 
percent) and the states (29 percent), but also including 
EU funds and private donations.

About the Foundations

German Research Foundation
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On January 25-27, 2021, in collaboration with National Science 
Foundation (NSF) and the Deutsche Forschungsgemeinschaft (DFG, 
German Research Foundation), an invitation-only workshop to assess 
the research challenges and opportunities at the intersection of 
cybersecurity and machine learning was held. The workshop brought 
together senior members from both the United States and Germany 
from government and academia to discuss the current state of the art 
and future research needs, and to identify key research gaps. The group 
of experts developed a draft roadmap that was shared and discussed 
with the wider academic community at the virtual “DFG-NSF Research 
Workshop on Cybersecurity and Machine Learning” on May 17 – 18, 
2021. This report is a summary of the discussions, framed around 
research questions and possible topics for future research directions.

The National Science Foundation and Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) gratefully acknowledge 
Patrick McDaniel, The Pennsylvania State University; Thorsten Holz, 
Ruhr-Universität Bochum; Indra Spiecker genannt Döhmann, Goethe 
Universität Frankfurt a.M.; and Felix Freiling, Friedrich-Alexander-
Universität Erlangen Nürnberg, who helped plan and implement 
the workshop and write and review the report. Also, we gratefully 
acknowledge the workshop participants for their contributions to the 
report. 

This document is a work of the United States Government and is in 
the public domain (see 17 U.S.C. §105). 
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Current state of US-German cooperation on the 
broader topic
Cooperation on the broader topic predominantly takes place 
on a rather granular, individual level. There are no large-
scale collaborations based on high-level initiatives between 
the two countries. A few examples for existing partnerships 
on an institutional level, both between academic institutions 
and public-private partnerships, are given below:

Academia
→      Since 2017, CISPA-Stanford Center for Cyber-

security, a joint Center between CISPA –  
Helmholtz Center for Information Security in 
Saarbrücken and Stanford University;

→    Since 2018, joint PhD program of the Max PIanck 
Institute for Intelligent Systems and Carnegie 
Mellon University (CMU) in the field of robotics;

→     In 2020, the Hasso Plattner Institute (HPI) and 
the University of California, Irvine announced the 
opening of the HPI Research Center in Machine 
Learning and Data Science at UC Irvine.

Public-private partnerships
→    The Universities of Stuttgart and Tübingen and 

the Max PIanck Institute for Intelligent Systems, 
among other players, collaborate with Amazon 
within the research consortium Cyber Valley;  

→    Intel Collaborative Research Center for Secure 
Computing – ICRI-SC, a collaboration between TU 
Darmstadt and Intel (since 2011); in 2021, the Private 
AI Collaborative Research Institute was launched 
where other enterprises like AVAST have joined

→    Partnership between TU Munich and Google in 
the field of AI, ML and robotics (since 2018);

→    In 2019, TU Munich and Facebook announced the 
creation of the Institute for Ethics in AI.

This document is divided into three topic areas: 1. Securing 
Machine Learning Systems, 2. Explainability, Transparency 
and Fairness, and 3. Power Asymmetry and Privacy. 
These topics were derived as the most important ones 
in the discussions in the steering committee as well as 
with the writing workshop participants. 

Technology is at an inflection point in history. Machine 
Learning (ML) is advancing faster than society’s ability 
to absorb and understand it; at the same time, computing 
systems that employ ML are becoming more pervasive 
and critical. These new capabilities can make the world 
safer and more affordable, just, and environmentally sound; 
conversely, they introduce security challenges that could 
imperil public and private life.

At this critical juncture, the impacts of ML on society 
are profound. ML can be used, for example, in college 
admissions or by lending institutions to ensure that 
underrepresented groups are treated more fairly. Or ML 
can reinforce existing patterns of exclusion. ML can pin-
point pollution, track ocean currents, and help farmers 
conserve water and soil resources. Conversely, it could 
be used by poachers, loggers or others to further degrade 
the environment. In politics, ML can be used to better 
fundraise, coordinate volunteers, or engage voters on key 
political issues. Or it can be used to spread disinformation 
and manipulate voters or to intimidate and disenfranchise 
citizens. Many jobs are being replaced by automation 
enabled by ML, leading to increased workplace efficiency 
and profitability, while also increasing unemployment and 
social stratification. Given the complex and far-reaching 
societal impacts of ML, striving to understand them 
requires diverse input and expertise.  

As a developing science, the challenges facing ML are 
multifold. These challenges include a myriad of technical 
issues, such as engineering and deployment of systems, 
defining and achieving robustness, model robustness in 
the face of advanced attacks, to social issues, such as 
explainability of outcomes, the complexity and sources of 
data, and ML’s effects on power, democracy, and privacy. 
To date, these problems are aggravated by the fragmented 
communities and approaches used in studying these 
issues. Given the complexities of these wide-ranging 
challenges, the need for international cooperation among 
many stakeholders is paramount.   
 
This report, which represents the ninth in a series of 
Research Conferences jointly organized by the DFG 
and the NSF, will discuss current and future research 
activities in this space, explore potential research areas 
of international collaboration between German and US 
researchers, and recommend future funding directions 
for the DFG and NSF.

Introduction
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As the development and deployment of systems 
that build on or leverage ML has accelerated, so 
too have threats. Yet, at present, there is limited 
science and best practices for building systems 
that are robust against attack. 

In this thrust, we seek to identify the needs, 
opportunities and challenges of developing a 
science and community for developing secure 
systems based on ML. Participants identified three 
distinct areas that require lengthy and sustained 
research.  

1� Securing ML Systems
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substantial efforts and investments are made to 
unify the scientific approaches.

→   Different communities: Similarly, the formal 
verification and ML communities are separate and 
rarely share venues. More opportunities need to be 
created for both the communities to commingle 
and develop a shared language and agenda.

→   Market incentives: As yet, there is a lack of incentives 
for users of ML to invest in the technologies and 
effort to create robust and verifiable models. 
Science must not only provide scalable systems, 
but produce the kinds of guarantees that will make 
investments in securing ML justifiable.

→   Consuming verifiable models: It is unclear how 
consumers of verified models map the results 
onto real world action, e.g., verifying liability or 
regulatory properties. Moreover, it is unclear how 
such properties relate to the specific outputs of 
models, further clouding the interconnections for 
consumers.

Opportunities 
ML models are getting more and more complex 
(multiple companies have billion parameter models). 
Formal-verification techniques for ML models 
are severely lagging behind (the state-of-the-art 
techniques can verify small models only). We need to 
accelerate the rate of progress in formal verification 
for ML. Given the interest in the area, funding can help 
accelerate progress in this area. Some interesting 
research directions are as follows:

→   ML specification: To be verifiable, ML models 
and systems that are built on them require 
a means to specify behaviors and properties. 
Such a specification requires clear, quantifiable 
statements of the goals and tolerances for 
component interactions that the ML-enabled 
system will be required to meet. Here, the science 
and specification language must capture properties 
such as performance, security, robustness, and 

1�1�  Formally Verifiable ML
ML has historically focused on accuracy, deferring other 
characteristics, such as robustness, to future work. 
Research carried out over the last decade has highlighted 
that models are often fragile in the face of adversaries. 
A science is needed to assess the robustness of models 
and further to develop methods for defending models 
in practical settings. Here, we focus on the verification 
of the models outside any system context, seeking to 
expand the practice of model generation and to provide 
formally verifiable properties.

The problem with current practice is clear: the lack of 
formally grounded techniques for the construction and 
use of ML results in systems that lack robustness and 
have weak defenses (and are in almost every known 
instance breakable).  

Challenges
Formally verifying models requires overcoming several 
central challenges

→   Property identification: A key inquiry explores what 
properties of ML models should be verified. Of course, 
the property will depend on the overall system goals, 
requirements and resource constraints. Key to this 
investigation will be the identification of a complete 
and correct logic or formalism to specify properties 
relevant to ML models.

→   Scalability: It is well known that formal verification 
techniques suffer from the state-explosion 
problem. As ML models are becoming very 
large (some modern ML models have tens of 
millions of parameters), scalability of formal-
verification techniques for ML models is becoming 
increasingly important. This problem has been 
particularly problematic in recent efforts to certify 
the robustness of ML models.

→   Scientific gap: There is a substantial gap between 
the state of the art in the general formal verification 
community and ML community. For this reason, it 
is not clear how to apply the lessons learned and 
techniques of generalized verification to models 
and data. This gap will keep widening unless 
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will lead to safer, more secure, more predictable, and 
more controllable systems. In the absence of progress, 
society experiences unexpected failures that may result 
in loss of confidence, huge costs, and even loss of life.

In another context, ML systems are likely to have a 
profound impact (either negatively or positively) on 
society’s ability to provide a fair and unbiased future. 
ML can learn and reinforce implicit or explicit biases, 
behave in ways we consider racist, and further isolate and 
discriminate against historically harmed communities. 
The development of a further science of verification 
(particularity with respect to fairness and robustness) 
is required to prevent these negative outcomes from 
perpetuating.

1�2�   A Science of Data Curation/How to build a 
better data lake

Currently, most ML models are built on datasets collected 
in a somewhat ad hoc manner. This results in datasets 
that are narrow and do not contain a diverse body of 
representative examples that are suitable for specific 
tasks; this in turn leads to models that have similar 
failure modes or simply fail to accurately represent the 
phenomenon at issue. For example, a self-driving car 
equipped with a vision system that has not seen unusual 
weather will fail under these weather conditions. The 
challenge is thus to build diverse/ “representative” 
datasets that are suitable for performing specific ML 
tasks in a suitable and secure manner. 

Failure to develop a new science for curating data will 
leave the scientific and technical community in a place 
where they continue to collect, filter, refine, and retire data 
in an ad hoc way; while adversaries can devise ways to 
identify and exploit poorly or under trained models. The 
existence of adversarial examples (and algorithms for 
generating them) demonstrates the pressing need for 
better cultivation practices to generate representative 
data sets for a wide range of environments in a broad 
range of phenomena.

Challenges
Developing a new science of data cultivation requires 
overcoming numerous technical and procedural 
challenges, including:

fairness. Efforts are needed to better understand 
the tradeoffs and determine when the environment 
can safely support specific operations. The 
development of a science of specification will 
require experts in ML as well as the myriad of 
domains in which it will be used.

→   ML and verification codesign: Currently ML model 
training occurs prior to any attempt for formal 
verification. An important scientific question is 
whether ML models and formal verification can work 
hand-in-hand. For example, can the architecture for 
ML models be designed and trained so that it makes 
downstream verification easier? This theme is similar 
to hardware-software codesign for verification, so 
many existing strategies may apply or inform the 
development of new techniques and science.

→   Exploiting system-level properties and constraints: 
ML components are deployed in a larger system 
(e.g., object detection used in an autonomous 
driving car). Can we derive properties or invariants 
of ML models that are required for the overall 
system to be correct? Note that this can make 
the problem easier because certain parts of the 
sample space of the ML model might be irrelevant 
to the entire system.  

→   Grand challenge problems: A community progresses 
by having some grand challenge problems. Can 
some verification problem challenge be put forth 
for this community? Examples might include 
verifying certain properties of end-to-end avionics, 
manufacturing, or other systems, which utilizes 
both ML and traditional software/algorithmic 
components.  

Broader impacts 
ML models are increasingly being used in security and 
safety-critical domains (malware detection, robotics, 
intrusion detection, avionics, etc.) and formally verifying 
the properties of these models is of the utmost importance. 
Yet, there is little science to provide hard guarantees under 
which systems can be certified and tested. Advances in 
the science and practice for ML verification (in isolation 
and within larger systems of software and hardware) 
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Opportunities 
Developing science, methods and practice for the 
curation of data is essential for the future of safe and 
secure uses of ML. We need to accelerate the rate of 
progress in this area by establishing a set of goals, 
metrics, and algorithms for data curation. Funding is 
essential to this process. Some interesting research 
directions are as follows:

→   Maturity model/Best practices: The first (and likely 
essential) step towards good data curation is to 
construct a curation maturity model. Adapting the 
security maturity developed by NIST for dataset 
curation is feasible, particularly with the goal 
of incorporating insights from existing security 
models and desired goals (robustness, fairness, 
etc.). Such a model will inform builders and give 
them easy baselines of care and policy makers 
can more easily figure out who is obviously not 
following the baselines. We observe that this may 
be feasible in the near term.

 
→   Domain-targeted curation: An enabling science 

would identify methods for learning effectively 
from small to large, curated datasets and building 
specific curated datasets for common problems in 
different domains (e.g., malware detection, self-
driving cars and medical AI). This would require 
overcoming a manifold of challenges, including 
for example (a) integrating domain expertise in 
algorithmic learning, (b) boosting learning from 
small and/or difficult to obtain training data, and 
(c) retraining when environmental or phenomenon 
factors induce concept drift. Further, it is quite 
likely that certain types of ML systems simply 
will not work with enough accuracy to be built 
in an off-the-shelf manner; in those cases, we 
will simply have to accept that we need to add in 
domain knowledge explicitly. Learning from small 
data may also be challenging.  

→   Detecting/preventing data poisoning: Where 
collection, processing or storage is potentially 
exposed to adversarial action, curated data may 
be poisoned. Here, an adversary who can influence 
(even a small amount) the training set can deeply 

→   Systemization of data collection: Any science in 
this space must start with the development of a 
systematic method for gathering and curating 
suitable datasets for particular tasks—for 
example, by removing outliers that are believed 
to be mistakes, but including those that represent 
unusual situations. Statistical methods from other 
disciplines, such as social sciences, offer key 
insights that are currently seldom considered in 
ML. Such techniques have developed approaches 
to identify “samples” that are representative of 
the broader population of examples, including 
highlighting recurring mistakes in sampling. Note 
that it is arguable that data/model curations and 
evaluations is partially an art (in addition to a 
science).  

→   Sparse or limited data set management: Curated 
datasets in many domains are likely to be small 
(with respect to the possible space of possible 
inputs), which in some cases negatively impacts 
their representativeness; a second challenge is 
how to learn effectively from these smaller curated 
datasets, which might involve borrowing and 
repurposing ideas from the old machine teaching 
literature.

→   Domain-sensitive curation: A third challenge is 
how to select representative data for specific 
tasks—since this is likely to be data that improves 
desired metrics and evaluation criteria beyond test 
accuracy. In many contexts, such selection must 
be informed not only by the domain characteristics, 
but also by the specific environment in which the 
model is being used (e.g., a specific instance of 
the domain).

→   Task-oriented curation: A final challenge is how 
to give the user autonomy in customizing their 
ML models. Here, a user of the system may have 
specific elements of a phenomenon that they wish 
to capture or may have specific requirements for 
model behavior (e.g., fairness, explainability, etc.) 
that are heavily influenced by training data.  
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challenge is to adapt a science of software/hardware 
system construction that acknowledges, mitigates, 
and counters the natural error/vulnerability of learned 
models and the systems in which they are embedded.

Indeed, much of the modern practice in many areas of 
engineering (mechanical, aviation, control systems, etc.) 
is focused almost entirely on measuring, approximating 
and repairing errors in physical systems. We must now 
learn from such endeavors and expand science and 
practice to encompass methods of mitigating error.

Challenges
Developing a new science of secure ML-enabled 
systems requires overcoming numerous architectural, 
technical and procedural challenges, including at 
least for example:

→    Modeling the attacker: One of the most controversial 
discussions surrounding the security of ML is 
the lack of agreement on what threat models are 
realistic and applicable to a domain. Whether 
the discussions are centered around adversarial 
capability (e.g., white, black, or grey box attacks) 
or the means to measure the robustness of a 
model (e.g., epsilon-budget in a Lp norm), any 
such discussion is unlikely to provide a universal 
attacker model on which systems can be evaluated. 
Thus, it is imperative that the scientific community 
map the threat and metric space for security and 
develop best practices for its application. More 
broadly, we need to develop a science to answer: 
how do we choose to model and optimize so 
that the results obtained could be mapped to 
policy mechanisms (and thus actionable and 
understandable to the larger system)?

●→    Measuring the attack: We need a method to 
quantify (and thus, prioritize) the severity of 
attacks. At present, we treat all attacks equally, 
but some are clearly more severe than others in 
the damage they can cause; perhaps defenses 
need to be catered towards severe attacks? This 
suggests we need better security metrics that 
integrate both the domain and model impacts 
of an attack.  

influence the behavior of the trained model. Further 
complicating matters, it is common to collect 
data from many sources. Here, if even one source 
is malicious, the resulting model can become 
compromised in ways that may or may not be 
evident. These investigations must acknowledge 
the increasing sophistication of adversaries and 
underlying importance of the ML-based decision 
making (i.e., adversarial incentives).

→    Legal liability and regulatory structures: Additionally, 
the legal consequences of the lack of care in 
training data curation requires analysis and merger 
of multiple bodies of law; the consequences will 
vary in part depending on the context of the data 
curation failure. 

→    Simulated ML environments: Simulation 
environments should be designed and integrated 
to enable the development of concept drift in real-
world settings. This new science should study the 
impacts of drift on the quality of data.

 
Broader impacts 
These solutions, if successful, will help build user trust 
in ML models built on curated datasets.

An established science of dataset curation will lead to 
building of models that are more representative and 
appropriate for the tasks for which they are intended. 
This will also lead to better metrics beyond accuracy on a 
test set for evaluating ML models, and better algorithms 
for learning from smaller data which might be useful for 
other purposes. 
 
1�3�   Securely and Safely Integrating ML into 

Systems
Being approximations of modeled phenomena, ML models 
are inherently imperfect. This introduces the question of 
how we can build trustworthy systems in the presence 
of ever-present vulnerability and/or error. Yet it is worth 
noting that the science and engineering communities 
have for centuries been building trustworthy/safe/reliable 
systems out of components that are not trustworthy, fail 
in catastrophic ways, and can be highly unreliable. The 
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the systems they serve. For example, identifying 
attacks, such as memory compromise (leading to 
manipulated results or model/data poisoning) or 
side channels (leading to the exfiltration of data or 
operation information), is essential to developing 
secure systems in the future.

→    Understanding the human-computer interaction: 
The human element needs to be incorporated when 
“securely & safely” integrating machine learning 
into systems; we must consider how the physical/
mental state of users, their personalities, biases, and 
emotions can affect their interaction with machine 
learning, especially with respect to the underlying 
mission/task at hand. Said differently, there are 
challenges in human-to-human interaction, and 
we are likely to see similar challenges in human-
to-machine interaction.

Opportunities
Developing science, methods and practice for ML-
enabled systems construction is essential for the 
future safe and secure use of ML. Some interesting 
research directions are as follows:

→    Building systems in the presence of failures: There 
is a need to leverage existing techniques and 
designs to mitigate error and malicious action in 
systems construction. The community should study 
how best to use techniques, such as redundancy, 
n-variant (e.g., ensembles), diversity, and voting to 
identify when the ML systems are behaving in sub-
optimal ways. Other possible directions will explore 
the application of control theory and fail-safes in 
addressing how systems can react to negative 
changes in system state brought about by failures 
or errors in ML components. Other directions may 
include the worst-case vs. average-case error 
analysis, and multimodal reasoning (e.g., check 
validity of sign at crossroad).

→   Mapping the threat space: As mentioned above, 
the lack of unifying principles or accepted best 
practice in identifying a threat model (or set of 

→    Countering the adversary: As discussed above, ML 
algorithms are inherently insecure. The question 
is how can we use these insecure components 
when building actual systems? Note that simple 
redundancy is not sufficient: transferability of 
attacks between learning models (and similarity 
in decision boundaries) mean that vulnerabilities 
are likely to have common failure modes. The 
community must find methods of detecting 
vulnerability (e.g., via measuring robustness) and 
hardening models against attack (e.g., adversarial 
training). The community must ask, what does a 
“sense of self” mean in the context of ML-enabled 
systems?

→    Mapping ML to system requirements and policy: IIn 
a given system, the selection of model architecture, 
learning technique, and training data distribution 
has profound effects on the behavior of the model. 
It is unclear how to quantify or reason about 
these effects on real system needs. While some 
metrics are obvious (e.g., accuracy, performance, 
computational cost, etc.), others are less clear (e.g., 
safety, risk, etc.). A new science must be developed 
to identify metrics and system requirements that 
can be projected onto ML algorithms and the data 
distributions used for training. Here the community 
must ask how can we measure/quantify the security 
levels of different learning models and system 
designs? Further, how can we apply rigorous 
methods established for security and privacy (e.g., 
crypto or safety) to ML-enabled systems? Further, 
ML robustness and system safety policies must 
be developed and integrated into existing system 
structures.

 
→    Mitigating system security vulnerabilities: In the 

general (and most frequent) case, ML is built on 
software systems, which are in turn executed on 
commodity operating systems and hardware. 
History has shown that such systems have 
vulnerabilities that can be exploited by adversaries 
to compromise confidentiality, integrity, privacy, 
and availability of the system. The community 
must develop methods of identifying the perils 
of such systems on ML implementations and 
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threat models) or a system’s construction limits 
the community’s ability to reason about the 
security of a system’s design or deployment. The 
threat space of ML-enabled systems should be 
integrated into the current practices for security 
engineering. This should not only identify threats, 
but provide guidelines for selecting ML algorithms 
and verifying the completeness and correctness 
of trained models (and training data).

Broader impacts 
The introduction of powerful ML algorithms is already 
fundamentally altering the practice of systems design 
and implementation; the capabilities of modeling 
complex phenomena provide a vast new universe of 
possibilities that address technical and social needs. 
However, if not addressed, the vulnerabilities that come 
with these new capabilities will lead to widespread harm 
and delay the advancement of science and technology. 
Thus, systematically identifying and addressing these 
solutions within the environmental and systems contexts 
is essential to the evolution of the discipline.
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A major obstacle to the practical use of ML 
algorithms in cybersecurity is their black-box 
nature. Modern learning techniques, such as 
Deep Learning and other nonlinear classifiers, 
are completely opaque to practitioners and do not 
provide explanations for their decisions, or allow 
them to understand the patterns captured by the 
learning process. Even from a theoretical point of 
view, the algorithms and their decision paths are far 
from being fully understood. Participants identified 
this lack of explainability and transparency as major 
research challenges that need to be addressed in 
the future. 

In addition, another challenge is research in the 
area of fairness: many current ML methods yield 
models that are “unfair” – their outputs may depend 
explicitly or implicitly on sensitive variables such 
as race and gender, and this dependence may 
be hard to determine or characterize. Depending 
on the specific use case they are used for, the 
challenges posed by ML methods vary considerably. 
In particular, ML applications that process personal 
data (e.g., in the platform economy, in healthcare, 
in the judicial system, etc.) face severe issues with 
regard to fairness/discrimination, privacy, and 
power asymmetry. However, in many industrial 
applications (e.g., autonomous driving, improving 
production processes in factories, etc.), these 
aspects are much less relevant but still need to 
be better understood.
 
In this second thrust, we seek to outline research 
opportunities to explainability, transparency, 
interpretability, fairness, and related concepts. 
The participants identified two distinct areas where 
collaboration between researchers from the United 
States and Germany would yield critical benefits

2�  Explainability, Transpar-
ency, and Fairness
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interactivity, guide to future action, and resilience 
to attack/manipulation (e.g., adversarial attacks 
in a transfer learning setting) should be explored. 
This would be a significant leap towards improving 
the practical usability of ML algorithms and 
increasing their transparency.

→    Building More Global Explanations: Existing 
post-hoc explanation methods are hyper-local 
and typically generate explanations for one 
particular prediction. How can this type of simple 
explainability be generalized to provide a more 
complete understanding of what the model has 
learned for, e.g., a particular class of inputs? 
Only then can we gain a deeper understanding 
of whether the ML algorithm has truly learned 
causal relationships and not merely statistical 
correlations.

→    Trustworthiness of explanations: Due to their black-
box nature, the output of ML algorithms cannot be 
fully understood, and the decisions made (and their 
properties) are not comprehensible to a human. 
However, what makes an explanation trustworthy? 
How do we know that an explanation generated by 
an algorithm is the real reason why a ML system 
made the decision it did (and does that kind of 
causality mean anything at all)? Furthermore, we 
need to explore explanatory systems robust to 
adversarial inputs that target both the model’s 
output and the desired explanation in different 
settings. To do this, we also need to define what 
robustness means in this context and explore 
how we can measure the cost of achieving this 
robustness.

 

Opportunities 
Given the crucial interest to improve explainability 
and transparency of ML algorithms, funding can help 
to accelerate research in this area. Beyond promising 
strategies for increasing the interpretability of ML 
algorithms such as relevance propagation, white-
box/third-party testing, and similar techniques, the 
participants identified the following research directions:

2�1 Explainability and Transparency
Many practical uses of ML depend on understanding 
why an ML model makes the decision it does (e.g., in 
healthcare or the judicial system). Depending on the 
application, different stakeholders such as end users, 
law enforcement, or designers need to better understand 
how the ML model reaches a specific decision. Note that 
this also includes decisions made about individuals (e.g., 
in college admission, loans, etc.). Better understanding 
ML decisions is important both to justify decisions that 
affect people and to determine whether a model makes 
decisions in a way that is consistent with both the task 
at hand and general societal values. Ideally, decisions 
should be verifiable to enable comprehensibleness and 
third-party testing.
 
In machine learning, this is usually done in two ways. 
The first is to directly build an interpretable model, such 
as a decision tree, where a human can understand what 
the model has learned and how it uses what is learnt to 
make decisions. Since these models are not as accurate 
as black box models for many tasks, a second approach 
is post-hoc explanations. Here, a black box model, 
given a certain input, outputs a decision as well as a 
human-understandable explanation of why this output 
was provided for this particular input

 
Challenges 
The participants identified several main challenges 
that need to be addressed:

→    Improving explanations: Current state-of-the-
art approaches provide only rather crude types 
of explanations (“pixel-level” explanations) that 
are difficult, if not impossible, for humans to 
understand. Furthermore, different stakeholders 
require different types of explanations (e.g., 
technical vs. more general information). Therefore, 
a significant challenge is to develop better 
explanatory methods customized for specific 
user groups that provide more practical and 
understandable explanations. Can we provide 
higher-value and more meaningful reasons that 
give humans a clear rationale for a particular 
decision? In particular, the tradeoff in explanations 
between fidelity, unambiguity, interpretability, 
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Similar ideas should be studied in more detail to 
understand the trade-off better.

→    Specialized explanations: The current research 
focus is primarily aimed at a technical audience 
and seeks to generate technical explanations 
(e.g., why a particular program was classified 
as malware, why a network packet is considered 
part of an attack, or why a mail is classified as 
spam). How can we produce explanations that 
are fit for purpose, especially for legal and public-
policy settings? Such use cases require a clear 
generalization of the explanation, especially for 
a general audience. What kind of explanation 
would be sufficient to provide legal justification 
(e.g., in a disparate impact case)? Mental models 
should be studied to design methods suitable for 
a general audience.

Broader impacts 
Since ML models are increasingly used in security- and 
safety-critical domains, the systems’ interpretability must 
be significantly improved because only then can safe use 
be guaranteed. New methods to explain predictions can 
focus on two aspects: first, they can focus on explaining 
distributions of the underlying data. Second, they can 
focus on explaining what the ML model has actually 
learned. Both aspects are crucial steps towards making 
ML systems more trustworthy and applicable in practice. 
With the challenges outlined above, we expect that 
important preliminary work is being done to decisively 
increase the transparency of ML systems and thus make 
them ready for use in many new application domains. 
Practitioners and researchers need to come together to 
solve this crucial challenge.

2�2 Fairness
A complementary research challenge is related to 
fairness: as mentioned earlier, the current generation 
of ML systems can sometimes produce outputs that 
explicitly or implicitly depend on sensitive variables 
such as race, gender, or other factors, or that exhibit 
undesirable biases against certain groups. In the 
recent past, researchers have found many examples 
of this problem, but the underlying dependency can 

→    Explainability by Design: A predominant approach 
to designing complex ML systems is to focus on 
accuracy and precision; explainability is typically 
not the primary focus of design decisions. Can we 
devise novel ML architectures and algorithms from 
the ground up that are (perhaps even primarily) 
designed to support the explainability of decisions? 
Especially in security- and safety-critical use 
cases, where a user needs to be able to understand 
the system’s decision, such an approach would 
offer clear advantages. One promising opportunity 
is to improve performance of intrinsically 
interpretable methods: Methods like decision trees 
allow for direct interpretation, and when used for 
making predictions based on comparatively low-
dimensional structured data, these methods can in 
many cases rival or even outperform more complex 
but opaque methods, like DNNs. An interesting 
question is to develop approaches for improving 
the performance and accuracy of intrinsically 
interpretable methods, thus facilitating their use 
in more complex applications. A complementary 
opportunity is to explore the limits of explainability: 
how can we measure where it will help a given 
stakeholder and how helpful a given explanation 
is in practice?

→    Relationship between opaque models and 
interpretable ones: In this research area, there 
is also an exciting trade-off between two design 
decisions: When is it better to build an interpretable 
model than to develop tools to provide post-hoc 
explanations for opaque models? An important 
research question is whether we can develop 
effective methods to move from an opaque model 
to an interpretable approximation of that model. 
One possible approach to this problem would be 
first to use an interpretable model. Based on this 
model, a more accurate opaque model could then 
be trained that preserves the explanatory power 
of the interpretable model. Another promising 
approach is relevance propagation: we need to 
develop new methods for propagating the relevance 
of a decision from a learning technique back to 
the original input space so that its effect can be 
studied and explained in the problem domain. 
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fairness? Solving this challenge will enable new 
application domains for ML methods. A significant 
practical challenge is whether we can build a fair 
system from unfair components.

Opportunities 
There are many research opportunities to address the 
challenges outlined above.

→   Contextual Definitions: In the short term, there 
is an opportunity to work with domain experts 
to develop contextual definitions of fairness that 
apply to specific applications. This approach 
should be seen as a first step in exploring a more 
general understanding of fairness. While it may be 
challenging to find and agree upon exact definitions, 
one way is to characterize the properties of clearly 
unfair situations and outcomes. Measurement 
studies can help to characterize the unfairness 
of ML systems deployed in practice.

→   Fairness solutions: A medium-term opportunity 
is to develop “ready to go” solutions for fairness 
that researchers and companies can use (more or 
less) proactively. This approach is like the currently 
available solutions for differential privacy and ideas 
from this domain could be adopted.

→   Legal infrastructure: Finally, a mid- and longer-
term opportunity is to bring lawyers and other 
interdisciplinary researchers into the conversation 
and create a legal infrastructure that is aligned with 
current technological capabilities. One challenge 
with algorithmic fairness is that existing laws 
are designed for human-based processes, while 
technology has evolved significantly. A better 
understanding of algorithms and their capabilities 
and limitations can lead to the design of better laws 
for regulating ML systems; an interdisciplinary 
discussion between CS and Legal researchers 
is needed.

Broader impacts 
The most critical broader impact of developing fair ML 
systems is to increase user confidence in ML systems, 
models, and processes. If done right, this could mediate 

be challenging to determine or characterize. The main 
problem that researchers identified is how to build ML 
systems that satisfy some notion of fairness and how 
to detect and measure the presence of unfairness. Note 
that a universal definition of fairness may be elusive, as 
fairness tends to be very context dependent.

Challenges
This research area is still in its infancy and there  
are many unresolved challenges that need to be 
addressed:

→    Definitions of fairness: Definitions of fairness 
are highly contextual and essentially a contested 
concept; for example, existing fairness definitions 
depend on variables such as location (the US vs. 
Germany vs. India), time, and application (living 
vs. working). How can we describe these soft 
terms strictly mathematically to be accounted 
for and enforced by ML algorithms and models? 
In the absence of a universal definition—which 
seems unlikely—are there ways to “minimize harm” 
by excluding patently unfair cases? We need to 
examine systematically and comprehensively 
existing ML systems and their unfairness to better 
understand this problem’s scope and scale. One 
goal is to agree on meaningful definitions of 
fairness and define specific metrics to measure 
and study fairness.

→    Measuring fairness: To measure fairness, we 
would need representative data sets covering 
a variety of different examples. How can we 
create such comprehensive data sets for various 
applications and use cases? How can we measure 
how representative a given data set is and how 
fair a model’s performance is on that data set? 
Developing appropriate metrics is a major research 
challenge that needs to be addressed.

→    Verification of fairness properties: Similar to security 
and safety properties, can we verify whether the 
outcomes of a given ML system are fair (according 
to a certain definition of fairness) and conform to 
certain norms? Can we characterize the properties 
of ML systems that may lead to greater or lesser 
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between politicized interpretations of contested issues, 
help decision-makers make better decisions, and raise 
awareness of injustice. However, overreliance on ML 
could also be a double-edged sword.

The solutions—if successful—will lead to the development 
of ML methods, models, and datasets that can be applied 
to a wide range of problems and applications, providing 
solutions that can arrive at decisions in a fair and 
unbiased manner. These solutions have the potential 
to decisively increase public confidence in the use of 
ML and enable applications in a variety of security-
critical domains.
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ML poses a challenge to traditional normative 
conceptions of privacy, self-determination, 
authenticity, responsibility, and data protection as 
well as to the concept of equality, to name just the 
most prominent ones. These rights are understood 
to be a backbone of democracy: without privacy 
and data protection, surveillance and omniscience 
of the state and private entities lead to chilling 
effects and a loss of freedom of decision as well as 
autonomy of citizens. The rise of ML with its need 
for large data sets for training and development and 
the enhanced technology behind its use can create 
further inequality in power between citizens/users, 
the state and private entities. This is particularly 
true as protective tools against these phenomena 
are highly difficult to obtain and to use efficiently 
for individuals. 

The individual has no control over the use of data 
and no power to remove herself from either the 
training or the use of data sets. Distance from prior 
actions and prior data can become impossible 
to achieve and this may lead to a restriction 
of innovative power. In addition, sometimes 
different principles of protection may conflict, 
e.g. verifiability of technologies and trade and 
business secrets. Without self-determination and 
autonomy, citizens are at risk of being manipulated 
and controlled. Without authenticity, responsibility 
is hard to attribute, and undue influence can be 
exhorted by devious actors.

These concerns have already been raised for 
traditional automated decision making and data 
processing. With ML, however, due to its specific 
features and the opaque nature of its decision-
making processes, additional problems arise, and 
existing problems become even more pressing. 

3�  Power Asymmetry and 
Privacy
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Challenges
→    Variety of Definition: Within the different 

communities assessing the opportunities and risks 
of ML, a number of understandings of the normative 
concepts involved exist. Views on privacy differ 
between disciplines as well as between different 
jurisdictions. Application and context need to 
be taken into consideration, so converging on a 
single definition may be difficult. It is necessary 
to understand and compare the variation of 
definitions across different communities in regard 
to core language and concepts, e.g., privacy, 
security, anonymity, authenticity, autonomy, 
freedom, choice, power, inequality, discrimination, 
etc., on the basis of informed and well-understood 
technology. Interdisciplinary and cultural/societal 
problems in communication can lead to social 
and scientific misunderstanding and misdirection 
of funds and resources that should be avoided. 
 
For example, privacy, security and data protection 
are legal as well as technological concepts, 
but technological and legal understanding of 
those definitions do not always align. There is 
a need to separate questions of freedom and 
questions of security as well as data-privacy and 
consequences of different scales and different 
protection standards of privacy. Also, the normative 
concept and constitutional setting of privacy/ 
data protection in the US and the European  
Union/Germany differ significantly. This plays a  
major role in risk assessment and in weighing 
(legal) interests. 

 The difference in definitions leads to 
misconceptions and miscommunication; a 
closer understanding of this problem in regard 
to core concepts allows better development of 
privacy-preserving ML, easier communication 
of legal guarantees to the end user, but also 
more stringent control by institutions. Finally, a 
better understanding would enable developers 
and researchers to precisely design conforming 
products and services rather than run the risk of 
being illegal, unethical or otherwise threatening to 
normative standards on either side of the Atlantic 

It is now possible to analyze and recombine data at 
scale with human-like quality and concepts and enlarge 
those. The aggregation creates unprecedented quality 
and quantity of information and thus a new basis for 
decision-making for any purpose. This data is mediated 
and thus subject to distortion, selection and redefinition 
by ML. ML thus accelerates the trend towards a society of 
ubiquitous surveillance and purposeful misinterpretation 
of data. It is an open question to what extent privacy 
is still possible under such circumstances and how 
human rights and freedoms can be freely exercised if 
information about individuals is omnipresent. Although 
certain principles of data protection laws exist to restrict 
excessive data collection and although the EU has recently 
published a draft for an AI regulation, a comprehensive 
normative reaction to ML is still pending – in particular 
in the international field - including assessments of how 
ML can be used to further privacy and other normative 
concepts of democratic, free societies.

To assess the risks as well as the possible benefits 
of ML regarding privacy and other normative values, 
it is necessary to reach a common understanding 
of these concepts between different disciplines, 
especially computer science and (data protection) 
law, but also integrating other normative sciences such 
as political science, sociology, philosophy or media 
science. Economic concepts behind ML have to be 
understood and scrutinized. At the least, differences 
and misunderstandings have to be identified in order 
to allow discourse and interdisciplinary responses to 
problems.

In the end, ML combined with privacy/normative concerns 
may create new opportunities for science, for society, 
for citizens and for the economy. More complex and 
varied privacy and data protection technologies and 
approaches may better enhance individual preferences, 
technology standards and policy decisions and protect 
the individual’s freedoms. Privacy-preserving and 
-enhancing technologies and in particular ML may 
empower end users to protect their own data and 
interests and to counteract surveillance and loss of 
power. Therefore, it is necessary to understand how ML 
can be developed and used to protect privacy, prevent 
surveillance and exploitation and fulfill other normative 
desirable goals.
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understood, a transfer of normative understandings 
and desirable functionalities into concise ML 
advancement and practices is difficult. Models 
and standards have to be developed, areas defined, 
functionalities adjusted and a dynamic control 
established. The concept of “privacy by design” 
and “privacy by default” is often not yet integrated 
from the starting point of designing ML systems 
and their use.

The example of standardization illustrates that 
a close analysis to the different underlying 
understandings and normative concepts has 
to be performed in order to achieve the desired 
normative outcome. ML integrates its own prior 
conceptions and may repeat existing societal 
and social unwanted foundations and results of 
decisions.

It remains questionable how it can be assured that 
the technological settings and integrations act on 
the basis of a common and general good rather 
than integrating individual concepts of fairness, 
privacy, autonomy etc. as understood by the ML 
developer, financer and user. This also requires 
dynamic concepts with continuous monitoring 
and iterative development for effective control. 
This may also include continuous curation and 
effective differential privacy concepts.

Opportunities
→    ML inferences impacts on privacy and other 

normative concepts: Inferences based on ML 
can infringe on privacy and autonomy as well 
as other societal, ethical and legal norms. 
There currently exists a lack of understanding 
concerning the capabilities and the theoretical and 
normative desirable limits of the consequences 
and prerequisites of the development and use of 
ML. The connection between theory and practical 
applications is often unclear and unspecific. 
Different conceptions of privacy, security, 
transparency, fairness, etc., may conflict in certain 
situations, for example on the question of whether 

and thus endangering acceptance. It would also 
enhance a mutual understanding of the importance 
of these concepts in regard to ML and thus position 
the US and Germany/the EU internationally as a 
stronghold for effective protection of human rights.

→    Lack of clarity on the effects and connections between 
robustness, fairness, privacy and other normative 
concepts: Potential effects and tradeoffs between 
different interests affected and possibly advanced 
by ML (robustness, fairness, autonomy, privacy, 
security, equality, etc.) are not fully understood. 
Privacy, in a broad sense, may conflict with other 
interests or legal rights, such as minority rights, 
anti-discrimination, sustainability, effectiveness 
of prosecution, transparency or fairness, but may 
also be essential to protect them, and there may be 
technical mechanisms such as secure computation 
that can eliminate some of the apparent conflicts. 
Likewise, the effect of the legal norms such as legal 
protection of trade secrets or intellectual property 
on the development of ML needs evaluation and 
more precise rules in order to be transformed into 
feasible technology. To assess these tradeoffs and 
how they are threatened by ML, its influence has 
to be defined and evaluated according to these 
principles in the various scientific and practical 
areas. At the same time, ML’s ability to influence 
these concepts and tradeoffs in a positive way 
must be better developed. Part of this research 
to effectively assess privacy and other normative 
risks for both individuals and society at large should 
include the evaluation of attacks on more complex 
kinds of data instead of attacks on a single record, 
thus taking the ubiquity of social networks and large 
databases into consideration.

In the end, the discussion may be framed differently, 
and the assessment of ML’s risks and opportunities 
for different interests strengthened. At the same 
time, areas may be defined where the use of ML in 
secured areas may be considered to be desirable 
and trustworthy.

→    Transfer of normative concepts into technology: 
Even if the difference of concepts has been 
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This includes a better understanding and more 
research into settings in which ML could be used 
for the protection of users against privacy and 
security breaches and how to prevent manipulation 
and chilling effects to name just these as examples. 
Existing ML is “loyal” to the developers’ design 
choices. To protect users against privacy breaches, 
however, ML needs to develop learning of user 
choices instead of the developers’ design decisions. 
Users and authorities acting in the interest of 
privacy, autonomy, freedom, etc., currently lack 
funds for usable alternatives to existing software. 
Concepts of differential privacy or the use of 
synthetic data offer opportunities for technical 
solutions to the challenges of ML for privacy and 
other normative concepts.

Further and concentrated research in this area 
will make ML socially more desirable and create 
clearer concepts where the use of ML should be 
avoided or restricted. This research could lead to 
an entirely new justification for some uses of ML.

→    Regulatory Approaches: Research needs to look 
not only at potential infringements of rights 
and interests, but also at adequate regulatory 
measures. With ML currently limited to a few 
private entities and the state, self-regulatory 
tools, transparency or fairness standards may 
not suffice as effective instruments to diminish 
risks for individuals, innovation, economy and 
society. Regulation by technology design needs to 
be developed and the standards of choice for those 
concepts further clarified, including the impact 
of the “technology counteracting technology” 
paradox. In this, the lack of human control over 
ML is the reason for implementing controlling 
ML systems, thus making human control even 
more remote. Legal transparency obligations must 
be balanced with competing interests like trade 
secrets or intellectual property. Concepts like in-
camera-control-procedures or limited disclosure to 
competent authorities and NGOs may be a solution. 
This balancing is closely linked with questions of 
explaining trained AI.

sharing the profits of data mining with the data 
subjects could be a possible solution (dignity v. 
money).

Risk assessment thus becomes difficult and open 
to interpretation without giving clear guidance. It 
is necessary to clarify what can be concluded, how 
information from ML and for ML can be used for 
various purposes and in the end how to educate 
users on the dangers of their data being potentially 
used for targeted manipulation of themselves and 
others. It is important to understand and evaluate 
better the effects on third parties not involved in 
the original data sets and usages of ML and other 
external effects. In particular, the public should 
better appreciate that the effects of ML address 
every citizen, and that individual precaution and 
defense is challenging, even among the well-
informed and highly knowledgeable.

Also, the conditions under which ML is developed 
and used need further clarification. Information 
and financial asymmetries between companies/
states developing and deploying ML and end user/
authorities acting in their own interests hinder 
the development of methods and technologies 
that empower end users and protect their privacy.

In effect, a better analysis can lead to shaping 
the development of ML in a different direction in 
order to include measures to prevent exploitation 
of data for unbridled abuse of power by state or 
private entities.

→  ��●ML as a tool for or as a threat to privacy and 
security and other normative concepts: IIt is 
necessary to analyze the risks and opportunities 
of ML regarding privacy, security, autonomy, 
freedom, etc.

More empirical and theoretical studies are 
needed to develop a metric (or at least a basic 
understanding) of the impact on privacy, focusing 
in particular on data uses and analytical tools 
by ML.
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In addition, the power of the nation-state to govern 
processes regarding multinational IT companies 
furthering ML is limited. New concepts have to be 
conceived in how effective control can be designed 
in order to protect privacy and autonomy and avoid 
power asymmetries prone to market failure. The 
effects and the effectiveness of existing or proposed 
regulation, like the GDPR, the proposed EU regulation 
on AI or the CFAA needs to be evaluated.

→   Access to data and limitations: The more digitalized 
society becomes and the more ML is employed, 
the more data becomes available for various 
ML uses. This calls for research to ascertain the 
justifications and procedural standards for the use 
of this data when data subjects/users/citizens are 
not empowered to restrict access to their data, 
control the use of it or restrict decisions on the basis 
of it. Also, there is often no legal position to grant 
fair competition as competitors are presently often 
excluded from these data sets. There needs to be a 
way of integrating the interests of third parties and 
the common, sustainable good, also in technical 
standardization processes. A better understanding 
of this will then help develop pertinent regulation 
governing access to data without destroying 
privacy, competition or innovation. Such research 
should also take into account how the use of ML 
and data for particular purposes can be effectively 
secured by technological measures, as regulatory 
impact is uncertain and can easily be changed 
by newer legislation. This includes concepts of 
ML to assist in restricting the use of data and 
the use of ML results. Procedural concepts on 
how to control the use of data publicly gathered 
need to be developed and technically supported 
by ML itself. Finally, this research needs to be 
directed at the discriminatory power of data sets 
and countermeasures against it in order to assure 
fair use of data and fair decisions.

→    Relationship between forms of society, government, 
surveillance and ML:  ML changes the roles of 
actors in society and their access to and exercise 
of power. It might influence the decision-making 
process in a democratic, free and open society as 

private entities gain more power with more use 
of ML and training and developing data. It also 
changes the potential for manipulation, control 
and surveillance by those who have access to 
ML. Possibly, it aggravates the balance between 
individuals, companies, the public and the state. 
Necessary is research to understand, systemize 
and reconstruct these effects on society as a whole 
and the different state foundations and interactions 
with private society. This calls for a new legal, 
sociological, philosophical and political science 
effort to redesign core concepts of the identity, 
the role, the function and the power of different 
actors under ML pressure. Legal norms attributing 
responsibility or granting individual rights, like the 
right to be forgotten, the right effectively withdraw 
consent and data from further use, also indirect use 
in ML, liability in systems or privacy by design need 
to be evaluated and integrated into the existing and 
developing technology. Further legal interests and 
rights have to be developed such as the right to non-
discriminatory use of data, of the right to unlearn 
models, rights against use of dark patterns and 
manipulative techniques and finally fair-market- 
and fair-competition-related legal positions to 
contradict the informational power asymmetries.

Broader Impacts
The international perspective to tackle these challenges 
on ML is mandatory: Understandings of concepts and 
priorities vary across cultures. The legal and normative 
standards differ (e.g., privacy in the US is not the same 
as privacy in Europe) as much as the technological 
standards, if existing, including a variation in concepts in 
smaller units or within a federalist/supranational public 
institution. Discrimination by ML can have different 
victims (ethnicity, gender, social groups, religious 
and ethical backgrounds) depending on the cultural 
setting and the legal understanding of discrimination. 
The regulatory setting is different; the multi-state-
EU and the federalist U.S. face different challenges in 
regulatory impact and procedures, which may make 
legal interventions more difficult depending on the state 
actor and its concise powers. Also, governments are 
increasingly less powerful in regard to globalized acting 
companies. The understanding of core values differs  
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(e.g., freedom of speech impact by ML); different industries 
are considered to be lead industries and call for different 
attention to their specific background; the legal/social/
cultural background of theories of government and 
society, of cultural understanding, of legal comparative 
aspects or of general understanding of technology 
and risk vary. Thus, US and German funding is likely to 
create different methodologies, different research and 
different results for similar questions which in itself 
creates new scientific opportunities for an improved 
mutual understanding that promotes a more aligned 
approach on assessing ML. A comparison of the different 
approaches that lead to a merging of best practices 
gives a compelling impetus for funding.
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The insights in this document were gathered from a 
diverse set of experts and suggests that the future of 
ML will be influenced by a balanced stewardship of 
ML’s benefits and challenges, particularly in the area of 
cybersecurity. The authors hope that the NSF and DFG 
as well as other interested parties find these insights 
useful.

Please note that these discussions represent viewpoints 
from a single moment in time. The rapid advances in 
technology, new application domains, and the interplay 
between ML and cybersecurity will introduce new 
opportunities and challenges in the future. Many of 
the areas of discussion will remain relevant for years, 
but it will be important to view them through the lens of 
evolving circumstances. As such, the present thinking 
about these issues is expected to change over time, and 
these questions and insights will need to be reviewed, 
revisited, and updated periodically. Finally, developing 
a specific structure or prescriptive task list for these 
pressing domains is outside the scope of this effort. 
Such a determination and resulting plan will require 
substantial effort across many organizations over 
many years.

Conclusion
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May 17, 2021 
Time format: Eastern Daylight Time (EDT)/Central 
European Summer Time (CEST)

11:00am/5:00pm  Opening ceremony by the workshop 
co-chairs Patrick McDaniel (The 
Pennsylvania State University) and 
Thorsten Holz (Ruhr-Universität 
Bochum) 

  Brief overview on the event, its goals, 
scope, and agenda

11:15am/5:15pm  Welcome by Erwin Gianchandani, 
National Science Foundation (NSF) 
Senior Advisor, Office of the Director

11:25am/5:25pm  Welcome by Kerstin Schill, Vice 
President of Deutsche Forschungs- 
gemeinschaft (DFG, German 
Research Foundation)

11:35am/5:35pm  Presentation on the Vision Paper 
by Patrick McDaniel, Thorsten Holz, 
and Indra Spiecker gen. Döhmann 
(Goethe Universität Frankfurt a. M., 
Steering Committee Member)

 •  Focus Topic 1 - Security for Machine 
Learning

 •  Focus Topic 2 - Explainability, 
Transparency, Fairness

 •  Focus Topic 3 - Power Asymmetry 
and Privacy

12:00pm/6:00pm  Open mic discussion of the Vision 
Paper (30 minutes per Focus Topic)

01:30pm/7:30pm Closing of Day 1

May 18, 2021  

11:00am/5:00pm  Opening remarks by the workshop 
co-chairs Patrick McDaniel (The 
Pennsylvania State University) and 
Thorsten Holz (Ruhr-Universität 
Bochum) 

  Brief recap of goals, scope, agenda, 
and Day 1 of this workshop

11:15am/5:15pm  Matchmaking event – meet in 
smaller groups (breakout sessions) 
according to specific interests. Feel 
free to move between the sessions. 

 •  Security for Machine Learning
 •  Explainability, Transparency, 

Fairness
 •  Power Asymmetry and Privacy
 • Meet NSF & DFG

12:15pm/6:15pm  Brief reports from the breakout 
sessions to the plenum

12:45pm/6.45pm  Open mic discussion: 
  necessary steps to implement this 

research agenda w.r.t. scientific 
communities, funding opportunities, 
US-German and interdisciplinary 
cooperation, and related aspects

1:25pm/7:25pm  Closing of Day 2 and this Research 
Workshop by the co-chairs Patrick 
McDaniel and Thorsten Holz

1:30pm/7:30pm Adjourn

Appendix – Research Workshop on Cybersecurity and  
Machine Learning Agenda


