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The "Food Technology and Safety" working group of the DFG Senate Commission on Food Safety (SKLM) deals with 
new technologies, which are being developed or used to treat foodstuffs. This statement examines insects as a novel 
source of proteins, lipids and other substances. The use of insects as a food source is not usual in Europe. The risks 
associated with such a use have not been sufficiently investigated. On the 22nd of February 2016 the SKLM carried 
out an initial assessment of the microbial, allergenic, toxicological and food regulatory safety aspects of the production 
and processing of insects for food use, with a special focus on technological considerations. It also identified gaps in 
knowledge and areas in which research is needed. 
 
 

Safety aspects of the production of foods and food ingredients from 
insects  
 
 
1. Introduction 
 
At present, insects are rarely used by the European food industry, but they are a subject of 

growing interest as an alternative source of raw materials. The risks associated with the use of 

insects in the production of foods and food ingredients have not been sufficiently investigated, if 

at all. The purpose of this opinion was to identify potential risks in the process chain from the 

farmed insect to an isolated fraction, with due consideration of different insect species and 

stages of development and a focus on individual fractions. In particular, the following aspects will 

be considered: 

(i) whether the use and processing of insects to obtain fractions or ingredients give rise 

to new, previously unknown risks, 

(ii) whether these are the same for all insects or vary according to the species and stage 

of development, 

(iii) whether the methods available to minimise or eliminate the risks suffice or whether 

these need to be modified or new methods need to be developed. 

In countries, in which insects are traditionally consumed, there is knowledge – based on 

everyday experience – regarding the processing, storage and preparation of usually wild-caught 

insects. However, there is a lack of scientifically based knowledge of the stages of preparation 

and processing to ensure food safety when these processes are carried out on an industrial 

scale. Given the potentially diverse use of the products and the resulting wide distribution of 

insect-derived ingredients in foods, which would reach many different consumers, an 

assessment of their safety is especially important. 

Insects are a widespread food source in many regions of the world [1]. As in the case of 

arachnids and crustaceans, they belong to the phylum Arthropoda (arthropods). A list of insects 

that are consumed around the world and that are mentioned in scientific publications can be 

found under the following: http://www.wageningenur.nl/en/Expertise-Services/Chair-groups/Plant-

http://www.wageningenur.nl/en/Expertise-Services/Chair-groups/Plant-Sciences/Laboratory-of-Entomology/Edible-insects/Worldwide-species-list.htm
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Sciences/Laboratory-of-Entomology/Edible-insects/Worldwide-species-list.htm. Insects of the order 

Coleoptera (beetles and their larvae) account for around 31%, Lepidoptera (moths, butterflies 

and their caterpillars) around 18%, Hymenoptera (bees, wasps and ants) around 15% and 

Orthoptera (locusts, such as migratory and desert locusts, crickets and grasshoppers) around 

14%. Insects of the order Diptera (such as flies and their larvae) represent around 5%. The 

methods described in the literature for the treatment of gathered whole insects include traditional 

methods such as boiling, baking, roasting, grilling, smoking, deep-frying, salting, seasoning, 

marinating and drying [2-5]. In Europe the consumption of insects is not usual, but is attracting 

growing attention. A selection of insects, which are offered for consumption on a small scale in 

some European countries or could be used in food production in future, is shown in Table 1.  

Insects are nutrient-rich and in some cases have a high protein and fat content when compared 

to other animal foods (pork, beef and poultry) (Table 2). Protein contents of 60 to 77% (in 

relation to dry mass) are reported for representatives of the Orthoptera order (locusts) [6, 7]. 

Insects also have high levels of monounsaturated and/or polyunsaturated fatty acids [8]. On 

average, they contain the essential amino acids identified by the WHO as an important part of a 

balanced diet [9] and they are rich in micronutrients such as iron, copper, magnesium, 

manganese, selenium and zinc as well as riboflavin, pantothenic acid, biotin and in some cases 

folic acid [6]. All insects contain the polysaccharide chitin, a polymer of N-acetyl-D-glucosamine, 

as a component of the exoskeleton. They also contain enzymes that could be of interest in food 

processing applications, e.g. cellulolytic and proteolytic enzymes [10, 11]. These data show that 

insects are not only an alternative source of protein but also contain other substances that could 

be used in the food industry. 

At the present time it is being discussed whether, in addition to their high protein content and 

favourable nutrient profiles, insects may offer ecological and economic benefits over 

conventional animal production and therefore may constitute an alternative or a complement to 

conventional food sources [12-15]. Examples of the potential advantages of insect production 

include reduced land use, high feed conversion efficiency [16, 17] and high fertility, with several 

life cycles per year. Initial data indicate that insect breeding could produce less greenhouse 

gases and ammonia per kilogram of mass gained than beef and pork production [18]. 

In 2013, the Department of Food Safety at the Istituto Zooprofilattico Sperimentale in Venice 

published a summary on the food safety of insects [19]. This was followed by statements from 

public authorities in Belgium [20], the Netherlands [21] and France [22] related to the safety 

aspects of using whole insects as food and animal feed based on a limited selection of currently 

http://www.wageningenur.nl/en/Expertise-Services/Chair-groups/Plant-Sciences/Laboratory-of-Entomology/Edible-insects/Worldwide-species-list.htm
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relevant species. These statements only examined processing methods with regard to 

decontamination, mainly focusing on traditional methods such as deep-frying, toasting, drying or 

freeze-drying. They revealed significant research needs regarding the potential microbial, 

allergenic and toxicological risks associated with the consumption of whole insects. In October 

2015, the European Food Safety Authority (EFSA) published a risk profile for the production and 

consumption of insects as food and feed [23]. 

In this opinion of the SKLM, the safety aspects that need to be considered in relation to the 

fractionation of insects for the production of foods and food ingredients are identified and 

discussed. It is assumed that the conditions in insect rearing facilities used to produce fractions 

and ingredients will have to comply with the food safety regulations of the German Food and 

Feed Code (LFGB) applicable to livestock husbandry (see chapter 4). This includes controlled 

husbandry and feeding conditions to prevent microbial and chemical contamination. Data on the 

consumption of whole insects and the risks associated with the capture of insects living in the 

wild is not taken into consideration. The risks associated with the use of insects or insect 

fractions as feed and the production of bee honey are also not taken into account.  
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2. Technological aspects relating to the use of insects for the extraction of fractions and 

ingredients  

Various fractions could potentially be obtained from insects, e.g. proteins (including enzymes), 

lipids and polysaccharides. Potential species-specific safety aspects must be considered during 

the selection of the insect species and their stages of development (in the case of 

holometabolous insects with a complete metamorphosis: egg, larva, pupa and adults; in the 

case of hemimetabolous insects with an incomplete metamorphosis: egg, nymph and adults; see 

glossary) depending on the intended use; these include microbial, allergenic and toxicological 

risks. Quality aspects such as nutritional [24] and sensory properties and processability must 

also be taken into account. 

The properties of the primary material as well as of the desired product affect the use of 

technological processing methods. The protein, fat and chitin contents of the larvae and 

imagines of an insect species may vary significantly and in turn may greatly influence the 

processing. The larva of the mealworm beetle Tenebrio molitor, for example, contains 

approximately 47% protein and 43% fat, whereas the adult mealworm beetle contains around 

65% protein and 15% fat (in relation to dry mass) [25, 26]. In comparison with the other 

developmental stages, the final larval stage of the black soldier fly (Hermetia illucens) contains 

high amounts of calcium in the form of deposits as calcium carbonate [27], which could affect 

fractionation.  

Insects intended to be consumed are prepared after harvesting (killing, cleaning, classification, if 

applicable removal of the gut, if applicable cutting up with removal of the head, extremities, 

antennae and wings, decontamination, preservation) [2-5]. For fractionation, different processes 

are applied, depending on the primary material and intended use. The choice of processes 

depends not only on the technological, functional and nutritional properties of the fractions but 

also on the purity of the fractions that can be achieved. The available food technological isolation 

and preparation processes need to be examined regarding their capacity to remove undesired, 

insect-specific components and contaminants (toxins and antinutrients, see chapter 3.2) from 

the fractions. Established processes may have to be modified or new, suitable processes may 

need to be developed. To ensure microbial safety (see chapter 3.1), additional decontamination 

steps may be required. Figure 1 shows a flow chart regarding the selection of the type of insect 

and the processing method to be used. In this context, it is essential to carry out a hazard 
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analysis (HACCP study1) for each product line, taking into account all risks (physical, microbial, 

allergenic and chemical). For hazards classified as relevant, critical control points and preventive 

programmes must be established.   

 

2.1. Proteins 

Regarding protein extraction from insects, there are differences between insects and 

conventional sources, such as the binding of insect-specific chitin to structure-providing proteins 

of the exoskeleton [28-30]. Insect-specific allergens (see chapter 3.3), insect-specific 

antimicrobial peptides [31-33] and prions that may be taken up by the insect through feed (see 

chapter 3.1) may also be present. Insect-specific prions have not yet been described. In most 

cases, the gut cannot normally be removed; therefore, it must be assumed that microbial 

proteins are co-extracted with the target protein(s), especially in the case of insects with a high 

proportion of gut and gut content to total mass. 

The protein content of various insects ranges from 5 to 77% with average values between 35 

and 61% based on dry matter [6]. The protein content as a percentage of the fresh weight of 

various edible insects, e.g. the larvae of the Mexican fruit fly (Anastrepha ludens) [34], the 

mealworm beetle (Tenebrio molitor), the darkling beetle (Zophobas mori) and the wax moth 

(Galleria mellonela) and the adult form of the house cricket (Acheta domesticus), ranges from 9 

to 25% [24, 35, 36]. Various studies describing the isolation of proteins from selected insect 

species at the laboratory scale are available [34, 37-40]. A procedure to isolate proteins from 

mealworm beetle (Tenebrio molitor; larvae), darkling beetle (Zophobas morio; larvae), lesser 

mealworm (Alphitobius diaperinus; larvae), house cricket (Acheta domesticus; imago) and Dubia 

roach (Blaptica dubia; imago) revealed that around 40% of the total protein was found in the 

filtered residue, around 40% in the centrifuged pellet and around 20% in the supernatant of the 

aqueous extraction phase [37]. Using aqueous extractions at different temperatures and 

pH values, gelling proteins were isolated from defatted, dried and pulverised beetle species 

(Aspongubus viduatus, Agonoscelis pubescens, Agonoscelis versicoloratus, Coridius viduatus). 

These proteins had properties similar to conventional gelatine [38, 41]. For proteome analyses of 

the greenbug (Schizaphis graminum), different methods of protein extraction with TCA-acetone, 

phenol or urea buffer solutions supplemented with detergents were compared [40]. 

                                                           
1 http://www.fda.gov/downloads/food/guidanceregulation/haccp/ucm077957.pdf 
  http://www.fao.org/docrep/005/Y1579E/y1579e03.htm 
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Large amounts of co-extracted chitin may have a negative effect on the digestibility of insect 

protein. Whether chitin is digested in the human gastrointestinal tract is being controversially 

discussed at the present time [42]. A protein concentrate obtained from honeybees with a 

10% NaOH extraction and subsequent precipitation was fed to rats and compared with whole 

pulverised bees. It was observed that the protein concentrate exhibited higher digestibility, 

measured as the ratio of absorbed to excreted protein. This was attributed to the removal of 

chitin [39]. Although the extrapolation of these data to humans still has to be verified, it does 

provide an indication that both the maximum amount of chitin recommended for human 

consumption in food and protein digestibility in association with chitin should be taken into 

consideration. 

When developing methods to isolate proteins from insects, chitin should be removed as far as 

possible and the extraction conditions should not alter the amino acid composition in a way that 

it will reduce the quality of the protein [39]. It must also be verified whether extraction methods to 

obtain proteins from conventional sources are suitable for the insect matrix or whether they need 

to be modified, and to what extent the native structures and the allergenic potential of the 

isolated protein fractions are affected. It is likely that the methods will have to be adapted to 

different insect species. There is a need for research in this area, as no data are currently 

available. 

 

Enzymes 

Because they have adapted to a variety of habitats and diets, a wide range of digestive enzymes 

is produced by the insect itself or by members of the gut microbiota [43-45], e.g. proteolytic 

enzymes [46-49], cellulases [11, 50-52], α-amylases [53, 54] and lipases [55]. The genomic 

analysis of insects and the metagenomic analysis of insect microbiota have allowed researchers 

to identify genes coding for enzymes with the potential to be used in food technology [44]. 

The complexity of the insect matrix could make it difficult to extract sufficiently pure enzyme 

fractions. For their use in food production, it must be established whether the process steps 

involved in the isolation and purification of insect enzymes differ from those used for 

conventional sources. Furthermore, methods to extract enzymes from insects should ensure that 

the enzymes remain intact and guarantee a complete decontamination of the product. It remains 

to be established whether possible anti-nutritive properties of certain insect enzymes present a 

risk when applied in food production (see also chapter 3.2). 

 



7 
 
 

2.2. Lipids 

Lipids are found in the fat body surrounding the insect gut, which is the central energy reservoir 

and an important metabolism site in insects [56]. The average fat content of various edible insect 

species ranges from 13 to 33% in relation to dry mass, whereby some species reach a 

maximum fat content of over 70% [6].  Moreover, a fat content of 4 to 32% has been reported in 

relation to fresh weight [24].The fatty acid spectrum depends on the species and the stage of 

development; it is however comparable with other animal lipids [6] and, like these, is affected by 

the composition of the diet [57]. Essentially, the favourable nutrient composition for each insect 

species depends on the type and quality of its feed [36, 58]. 

Lipids can be isolated from insects with standard methods such as extraction with hexane/ petrol 

ether or supercritical carbon dioxide [59-63]. 

Only a small amount of data is currently available on the influence of the extraction and thermal 

treatment on nutritionally relevant substances in insect oils. For example, the extraction 

conditions can alter the vitamin E content [61]. Thermal treatments resulted in vitamin losses in 

fat extracts from various insect species [64]. In the larva of the African palm weevil 

(Rhynchophorus phoenicis), various types of thermal treatments and storage affected the 

properties of the oil, e.g. its free fatty acid content [65]. 

With regard to the extraction of lipids from insects, it must be assumed that both triglycerides 

and other endogenous lipophilic substances are co-extracted. One example are ecdysteroids, 

hormones that control moulting, metamorphosis and reproduction in insects and may potentially 

elicit pharmacological effects [66, 67]. The levels of these lipid components in insect oils should 

therefore be investigated. 

In addition to endogenous lipophilic substances, lipophilic environmental contaminants such as 

dioxins [68] represent a potential risk. Lipophilic contaminants which cannot be avoided despite 

carefully controlled breeding conditions should be minimised during lipid extraction by making 

use of appropriate methods (refining).  

It must be clarified whether existing and usual methods for the extraction and refining of fats and 

oils are suitable for removing undesired insect-specific impurities. It may be necessary to adapt 

standard oil extraction and oil refining technologies to the insect species and their developmental 

stage.  
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2.3. Polysaccharides 

The polysaccharides present in significant amounts in insects include chitin, a polymer of N-

acetyl-D-glucosamine and one of the main component of the exoskeleton [28, 30], and glycogen, 

which is stored in the cells of the fat body [56] and in the muscles. In nature, chitin occurs in 

three forms: α, β and γ. In the most common form in nature, the α form, the N-acetyl-D-

glucosamine chains are antiparallel, in the β form they are parallel and in the γ form they are 

both parallel and antiparallel. In insects, chitin occurs in the α form [69]. The level of chitin 

depends on the insect species and the stage of development. 

Chitin is an interesting component for the food industry and is currently extracted from the shells 

of Crustacea [70-72]. Chitosan (poly-D-glucosamine) can be manufactured from chitin through 

deacetylation [73]. This substance can be used in food as a thickening agent, a prebiotic or as 

an antimicrobial agent. As a semi-permeable coating it can extend the shelf life of fruits, 

vegetables and other foods by minimising respiration and reducing water losses [74]. 

In studies on the chitin extraction from insects, isolation was accomplished in the same way as 

in the case of marine waste materials containing chitin, such as shrimp shells [69, 73, 75-79].  

It is not known whether chitin fractions from insects contain undesired, insect-specific 

contaminants whose removal would require additional technological processing stages. Given 

the potential adsorption of heavy metals onto chitin [80], insect breeding would have to take 

place under appropriately controlled conditions. The allergenic potential of chitin and the binding 

of allergens to chitin should also be investigated (see chapter 3.3). 

2.4. Other components 

Except of carmine, there is currently no knowledge regarding other insect-derived components 

that are or could be applied in the food industry. Carmine is extracted from gravid female 

cochineals (Dactylopius coccus) and is approved in Germany for use as a food colourant 

(E 120). The cochineals are bred on the cladodes of various members of the genus Opuntia (a 

genus in the cactus family) [81]. They are defatted with an organic solvent, e.g. hexane, dried 

and then finely pulverised. Extraction occurs in a boiling sodium carbonate solution at 95° to 

100°C and pH 9 for approximately 30 min. The carmine is precipitated at 100°C and pH 5.5 by 

the addition of citric acid, aluminium salts (alum) and calcium salts and then dried at 40° to 70°C 

[82]. Carmine has been described as a trigger for serious allergic reactions [83] (see 

chapter 3.3).  
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3. Safety criteria 

3.1. Microbial aspects  

The microbiota of insects is highly complex [43, 84-86]. Apart from the body surface and the 

mouthparts, the main habitat for microorganisms is the gut. They colonise the insects in various 

ways: vertically with the parents' microorganisms through a) the ovary, b) the egg capsule, c) a 

smear infection during egg laying, and horizontally through diet and environment [87-91]. In 

recent years, modern metagenomic analyses have greatly increased the knowledge on microbial 

biodiversity, especially in the insect gut [44, 50, 86-88, 90, 92-105]. It has been shown that the 

insect microbiota includes many previously unknown species. The number of species varies 

according to the insect species and its diet. 

The use of insects as food entails potential microbiological risks because insects can serve as 

vectors for microorganisms pathogenic to humans, animals and plants. In this context, one has 

to discern whether the transmission of microorganisms occurs mechanically through contact with 

the surface of the insect's body [106-110] or whether the microorganisms are able to persist and 

multiply inside the insect. Insects may become a natural reservoir for pathogenic 

microorganisms without themselves becoming sick [111-118]. The pathogens which can be 

transmitted through insects include viruses [119, 120], Rickettsia [121], bacteria [122], protozoa 

[123], fungi [124, 125], nematodes and other parasites of the human digestive tract [126, 127]. 

Insect-pathogenic microorganisms [128] are considered harmless to humans because they have 

a high degree of tissue tropism (tissue specificity) and can therefore probably only colonise the 

cells or tissue of insects. So far, no insect-specific pathogenic microorganisms harmful to human 

health have been described, except for a few representatives of the rickettsia genus [129-131]. 

Insect-specific prions or insects as natural vectors for prions have not yet been described. The 

transmission of prions to animals and humans by the consumption of insects contaminated by 

prion-containing feed cannot be ruled out and might be taken into account when deciding on the 

kind of feed to be used for insect breeding. It has been experimentally demonstrated that grubs 

of the common flesh fly (Sacrophaga carnaria) fed on hamster brain infected with prion proteins 

PrPSc (scrapie) can infect healthy hamsters after these ate contaminated fly extracts [132].  

Generally a distinction is made between microorganisms of the autochthonous microbiota, which 

always occur in all individuals of an insect species, and microorganisms of the allochthonous 

microbiota, which occur sporadically and are present because of specific environmental or 

breeding conditions or owing to contact with humans (gathering, harvesting) or other individuals 
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[85]. Members of the allochthonous microbiota may potentially become permanent commensals 

of insects. Human-pathogenic and/or opportunistically human-pathogenic and toxin-forming 

microorganisms of food hygiene and/or medical relevance are found in the autochthonous as 

well as the allochthonous microbiota. As far as is currently known, they are limited to the known 

species, which can trigger inter alia foodborne diseases (Table 1). These are often zoonotic 

pathogens, which are key microorganisms in standard food technology processes for food 

production and preservation and in food infections. Their occurrence in insects is widespread 

and non-specific. They belong to the genera Enterococcus, Streptococcus, Staphylococcus, 

Pseudomonas, Bacillus and Clostridium or belong to the Enterobacteriaceae, such as 

Escherichia, Enterobacter, Salmonella, Klebsiella, Serratia, Shigella or Yersinia [95, 96, 101, 

102, 133-140]. Klebsiella pneumoniae has been described as the most frequent bacterium in the 

gut of the Oriental migratory locust (Locusta migratoria manilensi) and is classified as 

autochthonous [50]. Fungi of the genera Aspergillus, Penicillium, Alternaria and Candida, which 

include human-pathogenic, toxin-forming species [98, 103, 104, 124, 136, 137, 141-145] (see 

also chapter 3.2) and allergenic species (see also chapter 3.3), are also part of the microbiota on 

the surface and in the gut of insects.  

Since in virtually all insect species it is not possible to remove the gut with its microbiota, the 

ratio of gut content to total mass is of particular interest in relation to the preparation of insects 

as food. The volume of the intestinal tract varies from 0.05 to 2 ml depending on the species. 

Average bacterial densities of 106 to 1012 bacteria per ml of gut content have been detected in 

some insect species, depending on the segment of the gut analysed [146]. Microbial biomass 

accounts for 1 to 10% of the total insect body depending on the insect species [147]. When 

processing insects to produce fractions or extract enzymes, it must therefore be assumed that 

ab initio there is an unavoidably high microbial contamination, which needs to be taken care of 

with appropriate processing steps, e.g. heating processes. 

It is likely that a contamination with human-pathogenic and toxin-forming species of the 

allochthonous microbiota can be made manageable by means of controlled breeding conditions, 

but the high density of insect monocultures represents an additional difficulty [128]. It must also 

be noted that different feed substrates can alter the species spectrum of the gut microbiota as 

well as the proportion of individual species depending on the insect species and developmental 

stage [86, 88-91, 101, 148-150], which in turn may increase the microbial count of human-

pathogenic microorganisms. The composition of the microbiota also changes during the complex 

individual development of insects and can be influenced by diet and environmental conditions 
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[151-153]. The EFSA has proposed a possible classification of substrates for insect breeding 

with different levels of hazard potential [23]. Human-pathogenic microorganisms, which cannot 

be avoided even under controlled breeding conditions, must be given special attention and must 

be inactivated by adequate processes. 

It can be assumed that the methods employed to process insects for the extraction of protein 

and lipid fractions or enzymes will remove the microbial contamination of the raw material. 

Nevertheless, it may be necessary to establish critical control points during the production and 

processing of insects [154] and intermediate decontamination stages. Initial data is available on 

the effects of different processes on the microbiological status of whole insects [20]. No data are 

available on the assessment of the microbiological risk in comparison to other animal sources.  

 

3.2. Chemical and toxicological aspects 

The selection of insect species suitable for consumption must also include a consideration of 

toxins and antinutrients, such as oxalate, tannin, phytate [155, 156] and thiaminases [157]. 

Toxins and antinutrients should be distinguished according to whether they are absorbed by the 

insect from the feed or synthesised by the insect itself. Insect breeding conditions should comply 

with applicable food safety regulations (see chapter 4). Insects selected for the production of 

food and food ingredients should therefore be kept in such a way as to prevent or minimise the 

accumulation of externally introduced toxins, drugs or antinutrients.  

Some insect species synthesise substances, which are toxic to humans. One example is 

cantharidin, a monoterpene (2,6-dimethyl-4,10-dioxatricyclo-[5.2.1.02,6]decane-3,5-dione) 

synthesised by the Spanish fly (Lytta vesicatoria), a beetle that belongs to the oil beetle family, 

and various other beetles. It is bound to proteins, which are therefore referred to as cantharidin-

binding proteins (CBP). The toxic effects following consumption include difficulty in swallowing, 

nausea and vomiting of blood [158-160]. Longhorn beetles may contain toluene. Darkling 

beetles (Tenebrionidae) produce quinones and alkanes [161], while certain moth species of the 

genus Zygaena contain cyanogenic glycosides [162]. The risk potential of such substances 

needs to be investigated. The same applies to toxins that may be formed by microorganisms in 

the insect gut, for example toxins of the genera Bacillus, Clostridium and Aspergillus (Table 1). 

No data is available on the presence of toxins in potentially edible insect species. A first 90-day 

feeding trial showed that Tenebrio molitor larvae do not lead to adverse effects in rats when fed 

as dried powder up to the highest dose of 3,000 mg/kg body weight/day [163]. 
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In the few studies on antinutrients in gathered insects, the measured concentrations of 

substances such as oxalate, tannin and phytate were far below harmful limits [155, 156, 164-

166]. Annual seasonal thiamine deficiency in Nigeria has been attributed to heat-stable 

thiaminases  described in the wild-gathered African silkworm (Anaphe venata) [157]. Although 

no relevant data is available, it may be assumed that heat-stable thiaminases are also 

biosynthesised under controlled breeding conditions. This issue should be investigated if the 

African silkworm were considered to be used for the production of food and food ingredients. 

The traditional consumption of insects in certain parts of the world is taken as an indication that 

the consumption of insects does not present a health risk [1, 167]. There may be specific cases 

in which the existing knowledge on the traditional use of insects in certain countries is 

comprehensive enough to serve as a basis to demonstrate a “history of safe use”. However, so 

far this point has not been scientifically or systematically investigated, it is possible that harmful 

components only present in trace amounts could be enriched together with the actual target 

components during fractionation, for example cantharidin with protein or toluene with lipids. The 

toxic potential of antinutrients and the antinutrient content should be minimised by selecting 

appropriate breeding and processing conditions. 

 

3.3. Allergenic potential 

Allergic reactions  

Isolated allergic episodes, including anaphylactic reactions [168-170], have been documented in 

the medical literature in connection with the consumption of insects. Pan-allergenic structures 

have been identified in arthropods (Arthropoda), which include insects (Insecta, e.g. bees, 

beetles, locusts and cockroaches), arachnids (Arachnida, e.g. mites) and crustaceans 

(Crustacea, e.g. shrimps, crabs and lobsters). Similarly, pan-allergenic structures have been 

described in molluscs (Mollusca) [171, 172]. For example, pan-allergenic tropomyosin may elicit 

allergic reactions to Crustacea as well as mites and insects (e.g. cockroaches) [173, 174]. This 

effect was confirmed in a study on cross-reactivity to mealworm larvae (Tenebrio molitor) in 

patients with inhalant and food allergy to mites and Crustacea, respectively. Tropomyosin and 

arginine kinase were identified as cross-reactive proteins. It is therefore possible that people 

who are allergic to Crustacea and house dust mites will also experience an allergic reaction to 

foods containing proteins from mealworm larvae [175]. Other ubiquitous or pan-allergenic 

structures (see below) may also result in a possible allergic cross-reaction to arthropods and 

therefore edible insects in atopic subjects. Furthermore, a primary sensitisation to these 
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ubiquitous or pan-allergenic structures and to species-specific allergens is possible. Unexpected 

allergic cross-reactions may occur due to sensitisation to pan-allergenic structures, as the 

allergic consumer cannot directly identify the source of the allergen. This problem becomes even 

more significant when potentially allergenic fractions, for example the protein fraction, are 

extracted and used as an ingredient in compound foods. Considering the relatively high 

frequency of inhalation allergies to house dust mites, flour mites and cockroaches in the general 

population when compared to classic food allergies [176, 177], a much larger proportion of the 

population could be affected by possible cross-reactions between mite and insect pan-allergens. 

The possible contamination of insects with pathogenic molds with known allergenic potential, 

such as Aspergillus and Penicillium or pathogenic yeast, such as Candida [178], should be taken 

into account as a secondary trigger of allergic reactions, i.e. not directly due to the insect. 

Measures would therefore have to be taken to ensure that cultivated insects were free from 

organisms with allergenic potential. 

 

Allergenic structures 

The main allergenic structures in insects are (glyco)proteins, which include the insect venom 

allergens (e.g. phospholipase A, hyaluronidase). In arthropods, 239 individual allergens are 

currently registered according to the requirements of the Allergen Nomenclature Sub-Committee 

of the World Health Organization and the International Union of Immunological Societies 

(www.allergen.org, last accessed 17.02.2016). These are mostly ubiquitous or pan-allergenic 

proteins, which, in simplified terms, can be categorised as muscle proteins (e.g. tropomyosin, 

myosin, actin, troponin C), cellular proteins (e.g. tubulin), circulating proteins (e.g. hemocyanin, 

defensin) and enzymes (e.g. arginine kinase, triosephosphate isomerase, α-amylase, trypsin, 

phospholipase A, hyaluronidase). About half of the current arthropod database entries relate to 

allergens in insects, although so far there has been no systematic investigation of the different 

stages of development. It is therefore unclear to what extent the developmental stages of insects 

contribute to allergenicity.  

In addition to (glyco)proteins, further allergenic or immunomodulatory substances are known in 

arthropods. For example, immunogenic glycostructures, some with anaphylactic potential, have 

been described. It has been demonstrated that the allergenic glycoepitope galactose-α-1,3-

galactose (α-Gal) can trigger anaphylactic reactions [179, 180]. For example, the bite of the tick 

or tick larva Amblyomma americanum (Arthropoda, Arachnida) can cause sensitivity to α-Gal 

http://www.allergen.org/
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with anaphylactic cross-reactions to the meat of non-primates, in which α-Gal is a blood group 

substance. There is currently no data on the presence of allergenic α-Gal in edible insects. 

Regarding the use of individual (micro-) components from insects, research on their levels in 

insects, optimised extraction methods and safety risks should be carried out. For example, the 

colourant carmine has been described as a trigger of severe allergic reactions to food [83]. 

Carminic acid alone or bound to protein [83] and demonstrably co-extracted IgE-binding proteins 

from cochineals have been discussed as possible triggers of documented anaphylactic reactions 

to carmine [181]. The binding of IgE antibodies from carmine allergic individuals to extracted 

proteins of the cochineal was inhibited in vitro by a carmine extract [181]. The results point to 

allergenic proteins in the cochineal and their presence in carmine. The data do not allow to rule 

out the possibility that carminic acid may contribute to the described effects. 

Chitin has also been described as another molecular structure with immunomodulatory potential. 

There is evidence to suggest that chitin can enhance the formation of allergen-specific IgE 

antibodies, which play a central role in the pathomechanism of immediate hypersensitivity 

reactions. This has been demonstrated in murine sensitisation studies, for example in 

Aspergillus fumigatus allergic mice and with the chitin-binding allergen Blo t 12 from mites 

(Blomia tropicalis), respectively [182, 183]. Furthermore, chitin-binding vicilins, leguminous 

storage proteins, have been described in Enterolobium contortisiliquum and Erythrina 

velutina[184, 185]. Vicilins have been described as important allergens in other, edible, legumes 

such as peanuts and soybeans [186, 187]. It is unclear whether complexes of chitin and known 

allergenic vicilins from dietetically relevant legumes possess an immunomodulatory potential to 

increase the formation of allergy-mediating antibodies in a similar way as described for chitin-

binding Blo t 12 from mites.  

Exposure and sensitisation scenarios 

The different types of exposure, i.e. injection, inhalation, skin contact and ingestion, are 

described for allergies or cross-allergies to insects. Possible exposures to insect venom, which 

is known to cause allergic reactions up to an anaphylactic shock after injection, occur in 

connection with the processing of whole insects, if the venom is not inactivated by the 

processing. However, up to now, allergic reactions including anaphylactic reactions following the 

consumption of insects have only been described in individual cases. 

There is still considerable uncertainty as to what extent primary sensitiation to insects occurs 

and to what extent such primary sensitiation can lead to allergic reactions. Similarly, there is a 

need to clarify possible cross-sensitivities to arthropod species and, especially, their clinical 
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relevance and the associated exposure scenarios, for example inhalation versus ingestion. 

Since Crustacea are usually heated before consumption, it must be assumed that these 

allergens and, thus, also cross-reactive insect allergens possess a certain degree of 

thermostability. It has been demonstrated, for example, that heating does not reduce the 

allergenicity of mealworm proteins but simply modifies the protein solubility [188]. Another study 

involving three different mealworm species documented that the IgE cross-reaction of Crustacea 

allergic subjects to mealworm tropomyosin was reduced but not eliminated after thermal 

treatment and in vitro digestion [189].  

In contrast, in the case of an isolated inhalant allergy to mites and/or cockroaches, allergens that 

have not been thermally treated (faeces, dusts) cause a primary sensitisation. The question 

regarding a possible cross-reaction with edible arthropod species should therefore be examined 

in the context of the food technology process used. For example, in vitro IgE cross-reactions of 

house dust mite allergic subjects to mealworm proteins were reduced to a greater extent (but not 

eliminated) than IgE cross-reactions of shrimp allergic subjects following thermal treatment and 

in vitro digestion. The profile of the cross-reacting allergens also differed depending on whether 

the individuals were sensitised to shrimps or house dust mites. It was concluded that the 

consumption of mealworms that were only thermally treated represents a risk to individuals who 

are allergic to shrimps and/or house dust mites [189]. 

Overall, it can be stated that only a few available food technology processes, such as 

fermentation and hydrolysis, are able to attain a significant reduction in food allergenicity [190]. 

Similar results may be assumed in the case of insect allergens which means that new methods 

for allergen minimisation need to be developed.  

Given the high sensitisation potential associated with arthropods (e.g. shrimps, mites, 

cockroaches), it has to be assumed that the increased consumption of insects or insect-based 

products will be associated with a rise in the frequency of allergic reactions to insects. 
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4. Food safety aspects 

In Germany, insects, insect parts and insect-derived ingredients intended for human 

consumption may, as in the case of all other foods, only be placed on the market if they comply 

with the respective food safety regulations. In this context, these include Regulation (EC) No. 

178/20022 (known as the basic regulation in food law), Regulation (EC) No. 852/20043 and the 

German Food and Feed Code. In accordance with these regulations it is forbidden to market 

foods which are not safe or to manufacture or treat foods in such a way that their consumption 

could be harmful to health. 

Insect parts and insect-derived ingredients are novel foods according to Regulation (EC) No. 

258/974 and may only be marketed in the EU following a health assessment and approval if they 

were not consumed in a significant degree before the cut-off date, 15th of May 1997. 

In some EU Member States, whole insects are also classified as novel foods, while other 

Member States consider them to be products which do not fall in the scope of Regulation (EC) 

No. 258/97. Legal clarity is provided by Regulation (EU) 2015/22835, which will replace 

Regulation (EC) No. 258/97 on the 1st of January 2018. In this regulation, whole animals are 

explicitly covered by the term 'novel foods'. Thus, whole insects will certainly require health 

assessment and approval before they can be marketed, unless they were consumed in 

noteworthy quantity in the EU prior to the cut-off date, 15th of May 1997. 

Without prejudice to the regulations on novel foods, imports of insects (live or dead), insect parts 

and insect-derived ingredients into the European Community from third countries are subject to 

the special import procedures set out in Directive 97/78/EC6, Directive 91/496/EC7 and Decision 

2007/275/EC8. According to these rules, the import of insects from third countries into the 

                                                           
2  Regulation (EC) No. 178/2002 of the European Parliament and of the Council laying down the general principles 

and requirements of food law, establishing the European Food Safety Authority and laying down procedures in 
matters of food safety 

3 Regulation (EC) No. 852/2004 of the European Parliament and of the Council on the hygiene of foodstuffs 
4  Regulation (EC) No. 258/97 of the European Parliament and of the Council concerning novel foods and novel food 

ingredients 
5  Regulation (EC) No. 2015/2283 of the European Parliament and of the Council on novel foods 
6 Directive 97/78/EC of the Council laying down the principles governing the organisation of veterinary checks on 

products entering the Community from third countries 
7 Directive 91/496/EEC of the Council laying down the principles governing the organization of veterinary checks on 

animals entering the Community from third countries and amending Directives 89/662/EEC, 90/425/EEC and 
90/675/EEC 

8 Decision 2007/275/EC of the Commission concerning lists of animals and products to be subject to controls at 
border inspection posts under Council Directives 91/496/EEC and 97/78/EC 
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European Community is subject to veterinary checks and must take place by a border inspection 

post. 

Under German food law, as a special import requirement, imports of insects, insect parts and 

insect-derived ingredients for human consumption must be accompanied by a certificate in 

accordance with § 6 Para 2 Clause 2 in conjunction with Appendix 2a of the German Food 

Import Regulation. In the import certificate, the official veterinarian or inspector in the third 

country who signs the document must confirm that the products intended for human 

consumption satisfy the general EU requirements for food safety and food hygiene. 

Specific import conditions relating to animal diseases are only defined for live honeybees and 

bumblebees in Directive 92/65/EC9 and Regulation (EU) No. 206/201010. 

  

                                                           
9 Directive 92/65/EEC of the Council laying down animal health requirements governing trade in and imports into 

the Community of animals, semen, ova and embryos not subject to animal health requirements laid down in 
specific Community rules referred to in Annex A (I) to Directive 90/425/EEC 

10 Regulation (EU) No. 206/2010 of the Commission laying down lists of third countries, territories or parts thereof 
authorised for the introduction into the European Union of certain animals and fresh meat and the veterinary 
certification requirements 
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5. Conclusions  

On the one hand, insect-derived fractions may be mixtures whose composition is determined by 

a shared physicochemical property, e.g. solubility in lipophilic media; on the other hand, single 

substances may be obtained by using specific purification and isolation methods.  

There are significant knowledge gaps regarding the safety-related and technological aspects of 

the processing of insects. To ensure the quality and safety of fractions or ingredients derived 

from insects, the following criteria must be taken into account: 

- Microbial, allergenic and toxicological risks must be avoided when selecting insect species, 

developmental stages and breeding conditions. 

 

- For the extraction of food ingredients, insects must be cultivated under defined husbandry 

and feeding conditions to prevent undesired components (pathogenic microorganisms, 

toxins, allergens, antinutrients etc.) from being absorbed / enriched from the feed or the 

environment. 

 

- Microorganisms must be inactivated by means of suitable process steps after harvesting. A 

critical aspect in the selection and/or development of methods is the effective killing of the 

gut microbiota, as it is not possible to remove the gut from most insects. Further 

decontamination steps may be necessary depending on the product line. 

 

- To assess the allergenic potential of insects and, in particular, of extracted fractions or 

individual substances, knowledge of potentially allergenic structures is required. The 

influence of different exposure and sensitisation scenarios and processing technologies on 

allergenicity should be taken into consideration. 

 

- Insects can synthesise undesired toxic components. This potential may be specific to a 

particular insect species and may depend on the developmental stage. These components 

must therefore be minimised during isolation and purification.   

 

- Fractions and food ingredients obtained from insects must be analytically characterised 

regarding their identity, purity and unavoidable residual levels of potentially harmful 
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substances. By doing so, it will be possible to compare the obtained data with those of 

isolates from conventional sources (e.g. plants), for which safety assessments are available.
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6. Required research 

Based on the criteria defined in chapter 5, the following research needs for the minimisation of 

microbial, allergenic and toxicological risks have been identified.  

- Collection of data on potential microbial, allergenic and toxicological risks related to  

(i) insect species and stages of development 

(ii) breeding and cultivation conditions 

(iii) processing methods 

 

- The suitability of a positive and/or a negative list as well as a QPS (Qualified Presumption of 

Safety) system similar to that used for microorganisms to select safe insect species / 

developmental stages for the extraction of fractions and ingredients 

(http://www.efsa.europa.eu/de/efsajournal/pub/4138; 2015) should be examined. 

 

- Examination of the insect species intended for use to establish the presence of safety-

relevant microorganisms; examination of the ability of potential decontamination processes 

to reduce the microbial count resp. to inactivate identified safety-relevant microorganisms. 

 

- Collection of data on 

(i) the occurrence of allergenic structures in insect species intended to be used 

for the extraction of insect fractions 

(ii) exposure and sensitisation in humans 

(iii) the influence of technological processes on the allergenicity of potentially 

allergenic structures 

 

- Examination of insect derived ingredients regarding 

(i) their allergenicity per se 

(ii) their allergenicity depending on the presence or absence of co-extracted 

endogenous, potentially allergenic protein structures 

(iii) their immunomodulatory potential, both alone and in complexes with known 

exogenous allergens, such as vicilins from edible legumes 

  

http://www.efsa.europa.eu/de/efsajournal/pub/4138
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- Collection of data on 

(i) the occurrence of insect-specific toxins in the insect species intended for 

use 

(ii) the co-extraction or enrichment of toxins and other critical components 

during the fractionation of insects 

 

- Development of criteria to assess the suitability of technological processes for the extraction 

of safe insect fractions and insect ingredients with due consideration of hazard analyses, 

identification of critical control points and potentially required preventive programmes 

(HACCP concept).  
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Table 1: Insect species which might be used as food in EU countries 

Insect Species Order developmental 
stage 
being consumed 

Relevant pathogenic microorganisms Literature 

     
Acheta domesticus  
(Cricket) 

Orthoptera 
(long antennae) 

imago (adult form) Enterobacteriaceae (Klebsiella sp., Yersinia sp., Citrobacter sp.) 
potential  vector for Abbreviata antarctica (experimental) 

[133, 191] 

Gryllus assimilis  
(Field Cricket) 

Orthoptera 
(long antennae) 

imago (adult form) no data on the autochthonous microbiota  
 

 

Gryllus bimaculatus Orthoptera 
(long antennae) 

imago (adult form) no data on the autochthonous microbiota , 
new species of Spiroplasma sp. with 95% identity to Spiroplasma platyhelix 

[192] 

Gryllodes sigillatus  
(Banded Cricket) 

Orthoptera 
(long antennae) 

imago (adult form) no data on the autochthonous microbiota  
 

 

Locusta migratoria 
(Migratory Locust) 

Orthoptera 
(short antennae) 

imago (adult form) Enterobacteriaceae (Klebsiella sp., Klebsiella pneumoniae, Klebsiella oxytoca, 
Yersinia sp., Enterobacter cloacae), Enterococcus sp., Pseudomonas aeruginosa 
vector and reservoir for vesicular stomatitis virus (VS) 

 [50, 154, 
193-195] 

Oxya fuscovittata Orthoptera 
(short antennae) 

imago (adult form) no data on the autochthonous microbiota  
 

 

Schistocerca americana  
( American Bird Grasshopper) 

Orthoptera 
(short antennae) 

imago (adult form) no data on the autochthonous microbiota  
 

 

Schistocerca gregaria 
(Desert Locust) 

Orthoptera 
(short antennae) 

imago (adult form) Enterobacteriaceae (Enterobacter sp., Enterobacter liquefaciens, Klebsiella 
pneumonia, Klebsiella oxytoca , Escherichia coli, Enterobacter cloacae, 
Enterobacter agglomerans, Serratia marcescens, Citrobacter sp.), Bacillus cerreus, 
Clostridium perfringens, Clostridium septicum, Clostridium difficile, Clostridium 
sporogenes, Clostridium capitovale, Pseudomonas aeruginosa, Acinetobacter sp., 
Enterococcus sp., Staphylococcus sp., Streptococcus sp.,  Rhodococcus sp.,  

[196-199] 

     
Achroia grisella  
(Lesser Wax Moth) 

Lepidoptera 
(butterflies and 
moths) 

caterpillar no data on the autochthonous microbiota  
 

 

Bombyx mori  
(Silkmoth) 

Lepidoptera 
(butterflies and 
moths) 

caterpillar, 
pupa without cocoon  

Enterobacteriaceae (Proteus vulgaris, Klebsiella pneumoniae,  Citrobacter freundii, 
Serratia liquefaciens, Serratia sp., Shigella  sp., Enterobacter sp., Erwinia sp., 
Pantoea sp), Aeromonas sp., Pseudomonas aeruginosa, Pseudomonas 
fluorescens, Clostridium sp., Bacillus sp., Bacillus circulans, Staphylococcus sp., 
Streptococcus sp., Enterococcus sp., Enterococcus mundtii, Acinetobacter sp., 
Moraxella sp., Aeromonas hydrophila, Actinobacteria 

[52, 149, 
200, 201] 

Galleria melonella  
(Greater Wax Moth)  

Lepidoptera 
(butterflies and moth) 

caterpillar no data on the autochthonous microbiota, 
Galleria melonella is prevalently used as an in vivo infection model for pathogenic 
bacteria and fungi, because numerous human-pathogenic microorganisms are 
easy to breed in this species 

[202-205] 

Imbrasia bellina/Gonimbrasia 
bellina,  
(Mopani, Emperor Moth) 

Lepidoptera 
(butterflies and 
moths) 

caterpillar Alternaria sp., Aspergillus sp., Chaetomium sp., Drechslera sp., Penicillium sp.,  
Fusarium sp., Mucor sp., Phoma, 

[206] 

Imbrasia bellina/Gonimbrasia 
bellina,  
(Mopani, Emperor Moth) 

Lepidoptera 
(butterflies and moth)  

caterpillar Alternaria sp., Aspergillus sp., Chaetomium sp., Drechslera sp., Penicillium sp.,  
Fusarium sp., Mucor sp., Phoma, 

[206] 
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Alphitobius diaperinus 
(Litter Beetle) 

Coleoptera 
(beetles) 

larva 
(lesser mealworm) 

no data on the autochthonous microbiota  
vector for Salmonella enterica, Escherichia coli, Campylobacter jejuni, 
Acinetobacter sp. 
Aspergillus sp., Infectious Bursal disease virus (IBDV), Marek´s disease virus, 
Turkey Corona virus, Sporozoa: Coccidia (Eimeria) 

[111-114, 
207-216] 

Tenebrio molitor  
(yellow Meal Beetle) 

Coleoptera 
(beetles) 

larva 
(mealworm) 

Enterobacteriaceae (Salmonella sp., Erwinia sp., Pantoea sp.), 
Staphylococcus sp., Haemophilus sp., Clostridium sp., Bacillus sp.,  
Enterococcus sp., Bacillus sp. 
vector for Mycobacterium sp. (experimental) 

[90, 139, 
154, 217] 

Zophobas atratus 
(Morio Beetle) 

Coleoptera 
(beetles) 

larva  vector for Mycobacterium sp. (experimental) [217] 

     
Atta laevigata  
(Leaf Cutter Ants) 

Hymenoptera 
(bees, wasps and 
ants) 

imago (adult form) Aspergillus fumigatus, Aspergillus sclerotiorum and Penicillium sp., opportunistic 
human-pathogenic fungi of the genera Cladophialophora, Exophiala, Metarhizium, 
Ochroconis , Phialophora and Penidiella 

[141, 145] 

     
Hermetia illucens  
(black soldier fly) 

Diptera 
(dipteran, flies) 

larva Enterobacteriaceae (Klebsiella pneumoniae , Escherichia coli, Morganella 
morganii, Klebsiella sp., Klebsiella granulomatis, Shigella sp., Proteus mirabilis, 
Providencia rettgeri, Providencia stuartii, Citrobacter sp., Enterobacter sp.) 
Enterococcus caccae, Clostridium sp., Bacillus sp., Strepptococcus sp., 
Pseudomonas sp., Staphylococcus sp., Corynebacterium sp., Acinetobacter sp., 
Wohlfahrtiimonas larvae sp. nov. 
potential  vector for Ascaris suum (experimental) 

[88, 218-
221] 

Musca domestica 
(Housefly)  

Diptera 
(dipteran, flies) 

larva dependent on rearing conditions frequently transition of allochthonous to 
autochthonous microbiota: Enterobacteriaceae  (Escherichia coli, Enterobacter sp., 
Klebsiella sp., Citrobacter sp., Shigella sp.,  Morganella sp., Proteus sp., 
Providencia sp.)  
Bacillus sp., Bacilius cereus, Staphylococcus aureus, Pseudomonas aeruginosa, 
Streptococcus pyogenes, Streptococcus faecalis, Enterococcus sp. 
fungi as Aspergillus tamari and Alternaria sp., 
vector für Escherichia coli O157:H7, Salmonella sp., Salmonella typhi, Yersinia 
pseudotuberculosis, 
vector for different species of nematodes: round worm (Ascaris lumbricoides), 
whipworm (Trichuris trichiura) and hookworm 
vector for Circovirus, subtypes of avian influenza virus H5N7 and H7N1, 
suspected to act as a vector for Vibrio cholerae 

[95, 106, 
109, 110, 
126, 138, 
222-233]    
  

     
Blattella germanica 
(German cockroach)  

Blattodea 
(cockroachs) 

imago (adult form) dependent on rearing conditions frequently transition of allochthonous to 
autochthonous microbiota: Enterobacteriaceae (Escherichia coli, Salmonella sp., 
Klebsiella sp., Klebsiella pneumoniae, Enterobacter sp., Enterobacter aeroginus, 
Enterobacter cloacae, Serratia sp., Serratia marcesens, Citrobacter sp., Citrobacter 
freundii, Proteus sp., Proteus mirabilis, Shigella sp.) Enterococcaceae, 
Enterococcus sp., Staphylococcaceae sp., Staphylococcus aureus, Streptococcus 
sp., Aeromonas sp., Pseudomonadaceae, Pseudomonas sp., Pseudomonas 
aeruginosa,  Haemophilus sp., Clostrdiales, Candida sp., Mucor sp., Penicillium 
sp., Aspergillus niger, Aspergillus fumigatus 
 

[115, 150, 
234-237] 
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Periplaneta americana 
(American cockroach) 

Blattodea 
(cockroachs) 

imago (adult form) dependent on rearing conditions: Enterobacteriaceae (Escherichia coli, Escherichia 
vulneris, Salmonella sp., Enterobacter aeroginus, Enterobacter cloacae, Shigella 
flexneri, Klebsiella pneumoniae, Serratia marcesens, Citrobacter freundii, 
Enterobacter cloacae, Providencia sp., Yersinia pseudotuberculosis, Yersinia 
intermedia, Klebsiella sp., Klebsiella oxytoca, Klebsiella planticola, Salmonella sp.)  
Proteus sp., Proteus mirabilis,  Proteus vulgaris, Leclercia adecarboxylata, 
Rahnella aquatilis,  Bacillus sp., Staphylococcus sp., Staphylococcus aureus, 
Staphylococcus epidermidis, Enterococcus sp., Pseudomonas aeruginosa 
Aspergillus niger, Mucor sp., Candida sp., Fusarium sp., Penicillium, 
round worm (Ascaris lumbricoides), whipworm (Trichuris trichiura), Coccidia, 
Entamoeba histolytica, Enterobius vermicularis, Schistosoma haematobium, 
Balantidium coli 

[140, 232, 
235, 237, 
238] 
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Table 2: Content of proximates in selected insects compared to conventional foodstuffs (in [%], if 
not stated otherwise). 

 Water Protein Fat Carbo-
hydrates Ash Energy 

[kJ/100g] 
Beef (lean)1 75.0 22.3 1.8  1.2 485 
Beef (carcasse)1 54.7 16.5 28.0  0.8 1351 
Pork (lean)1 75.1 22.8 1.2  1.0 469 
Pork (carcasse)1 41.1 11.2 47  0.6 1975 
Chicken1 75.0 22.8 0.9  1.2 439 
Egg (raw)2 75.8 12.6 9.9 0.8 0.8 594 
Whole wheat flour2 11.7 10.7 2.4 74.1 1.0 1426 
Silkworm, 
fresh (Bombyx mori)3-4 82-87 8.8-9.3 1.2-4 4.4 1.1-1.4 282 

House cricket, fresh 
(Acheta domesticus)3 69.2 20.5 6.8 0.8 1.1 587 

Yellow mealworm, 
fresh (Tenebrio 
molitor)3 

61.9 18.7 13.4 0.27 0.9 860 

Silkworm,dried 
(Bombyx mori)3-4  53.8-69.8 8.1-9.5 25.4 6.4-11.1 1630 

House cricket, dried 
(Acheta domesticus)3  66.6 22.1 2.6 3.6 1904 

Yellow mealworm, 
dried (Tenebrio 
molitor)3 

 49.1 35.2 7.1 2.4 2258 

 
Sources: 1 [239], 2 [240], 3 [25], 4 [241]. 
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Figure 1: Flow chart for the selection of insect species and processing processes  
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Glossary 
 
Allochthonous The allochthonous microbiota refers to all microorganisms that can be found 

temporarily in a certain environment, e.g. in a certain insect species. 
 

Autochthonous The autochthonous microbiota refers to all microorganisms that can be found 
stably in a certain environment, e.g. in a certain insect species. 
 

CCPs Critical Control Points  
 

HACCP The `Hazard Analysis and Critical Control Points´ concept is a preventative food 
safety system by which every step in the processing, storage and distribution of a 
food product is scientifically analysed for microbiological, chemical and physical 
hazards. 

  
Hemimetabolous Hemimetabolous insects develop from eggs to nymphs and then the adult form 

(imago). 
 

Holometabolous Holometabolous insects develop from eggs to larvae or caterpillars, then pupae 
and finally the adult form. 
 

Imago The sexually mature adult form of insects, which follows from the juvenile stages 
after pupation or the final moult. 
 

IgE Immunoglobulin E 
  
Key microorganisms Microorganisms which occur in large numbers in a certain disease either alone or 

with other microorganisms and give a disease its typical pattern. In food 
production, these are microorganisms (usually those which cause spoilage or 
zoonotic agents), which occur in certain foods and whose inactivation can be 
shown to achieve effective sterilisation of the food. 

  
Microbiota A microbiota is a community of microorganisms which occur in a certain 

environment, e.g. in a particular insect species, and may be mutually dependent 
or exist independently of one another due to the same needs. 
 

QPS Qualified Presumption of Safety 
 

TCA Trichloroacetic acid 
 

Zoonotic agent Zoonotic agents (from the Greek "zoon", animal; "nosos", ailment) are pathogens 
which are transmitted from animals to humans and from humans to animals. In 
food production this term refers to microorganisms which are transmitted through 
food. 
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