Jump to main navigation Skip to Content

DFG Logo: back to Homepage Deutsche Forschungsgemeinschaft

banner: Kopfbereich DFG2020 Logo - englisch Because research matters

Information for Researchers No. 5 | 10 January 2020
Priority Programme “Hybrid and Multimodal Energy Systems: System Theoretical Methods for the Transformation and Operation of Complex Networks” (SPP 1984)

In March 2016, the Senate of the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) established the Priority Programme “Hybrid and Multimodal Energy Systems: System Theoretical Methods for the Transformation and Operation of Complex Networks” (SPP 1984). The programme is designed to run for six years structured in two three-year funding periods. The present call invites proposals for the second three-year funding period.

The electric power system is a complex assemblage of interconnected components of different types, organised in geographically distributed structures of high complexity, which are required to meet highest reliability and security standards to enable a secure, stable and uninterrupted electric power supply. Currently, due to the politically enforced decarbonisation of the energy sector, the electric power system is undergoing a drastic transformation, which will have a fundamental impact on the way the system is organised and operated. In this context, according to current development trends, it can be expected that the system of the future will become distributed, multimodal, hybrid and smart:

Distributed: Due to the decommissioning of conventional power plants and the large-scale integration of renewables within transmission and distribution networks, the system will be characterised by distributed and mainly converter-dominated generation. Further, the large-scale integration of storage devices all over the system is expected.

Multimodal: The grid will be interlinked with other energy networks – such as heat and gas networks – via multimodal interfaces. This will enable multimodal power and energy interactions in a coordinated way transforming the system into a highly interdependent multimodal energy system.

Hybrid: The integration of HVDC links into the AC-grid will enable coordinated power exchange over long distances in a controlled way and will transform the system into an AC/DC hybrid electric power system.

Smart: The system will be pervaded by information and communication technologies over all voltage levels and multimodal domains enabling integrated monitoring, protection and control in real time.

This transition towards a Distributed, Multimodal, Hybrid, and Smart (DMHS) system does not only require significant changes in the established infrastructure. In fact, it can be expected that the complexity of the system will substantially increase and its dynamic behaviour will fundamentally change making the development of new planning, control and operation strategies and concepts a matter of urgency.

The Priority Programme targets on new system theories, concepts and methods for the future DMHS system to guarantee a secure, stable, resilient and efficient operation. The programme’s key objective is the research on new operational concepts, system architectures and monitoring and control schemes for future DMHS power systems. Besides, the programme also targets on research topics like suitable modelling, analysis and optimisation approaches which can be applied in the DMHS power system context.

The second three-year funding period of the Priority Programme is intended either to build upon the progress and achievements of the first phase or to add new ideas both covering the following areas:

  • systems theory for structuring, planning, design and operation of complex DMHS power systems
  • system architectures for DMHS systems, e.g. cellular structures, multimodal active distribution networks and HVDC super grids
  • strategies and methods for resiliency, security and stability enforcement of DMHS systems, e.g. joint DMHS emergency control and contingency plans, prevention and mitigation of controller conflicts in DMHS systems
  • provision of ancillary services in DMHS systems, e.g. black-start and DMHS system restoration, grid forming converters for frequency enforcement, cross voltage level congestion management and voltage control, flexibility harvesting across DMHS domains
  • control and optimisation methods for DMHS systems, e.g. multi-agent-systems, self-organised distributed controllers, distributed machine-learning-based control, game-theoretic approaches, non-linear multi-objective optimisation
  • modelling and simulation of DMHS systems, e.g. joint modelling of ICT-, multimodal and hybrid energy systems under consideration of multiple voltage levels in the electric domain
  • approaches for deterministic and probabilistic steady-state and dynamic modelling of DMHS systems, e.g. nonlinear and hybrid model order reduction, nonlinear and hybrid system identification, artificial-intelligence-based modelling

It should be noted that aspects like future energy scenarios with assessment of e.g. storage and flexibility demand, future market developments and products or specific components inside subsystems like high-voltage or power semi-conductor components or specific communication technologies as such are not part of the Priority Programme.

The Priority Programme intends to support the academic career of young researchers through intense contact between different research teams, workshops and summer schools. It will also provide a gender equality programme and family friendly working conditions.

Proposals must be written in English and submitted to the DFG by 31 March 2020. Please note that proposals can only be submitted via elan, the DFG’s electronic proposal processing system.

Applicants must be registered in elan prior to submitting a proposal to the DFG. If you have not yet registered, please note that you must do so by 17 March 2020 to submit a proposal under this call; registration requests received after this time cannot be considered. You will normally receive confirmation of your registration by the next working day. Note that you will be asked to select the appropriate Priority Programme call during both the registration and the proposal process.

If you would like to submit a proposal for a new project within the existing Priority Programme, please go to Proposal Submission – New Project – Priority Programmes and select “SPP 1984” from the current list of calls. Previous applicants can submit a proposal for the renewal of an existing project under Proposal Submission – Proposal Overview/Renewal Proposal.

In preparing your proposal, please review the programme guidelines (form 50.05, section B) and follow the proposal preparation instructions (form 54.01). These forms can either be downloaded from our website or accessed through the elan portal.

The review colloquium for the Priority Programme will be held on June/July 2020 at the Technical University in Dortmund. The date and place of this venue will be communicated through the programme’s website and by a notification to the applicants. The envisaged start of funding is end of 2020.

Further Information

More information on the Priority Programme is available under:

The elan system can be accessed at:

DFG forms 50.05 and 54.01 can be downloaded at:

For scientific enquiries please contact the Priority Programme coordinator:

  • Prof. Dr. Christian Rehtanz
    Technische Universität Dortmund
    Fakultät für Elektrotechnik und Informationstechnik
    Institut für Energiesysteme, Energieeffizienz und Energiewirtschaft
    Emil-Figge-Str. 70
    44227 Dortmund
    phone +49 231 755-2395
    Link auf E-Mailchristian.rehtanz@tu-dortmund.de

Questions on the DFG proposal process can be directed to:

Note:

This text is available at
Interner Linkwww.dfg.de/foerderung/info_wissenschaft/2020/info_wissenschaft_20_05
Please use this identifier to cite or link to this item.