Tiefe Hirnstimulation

Stand der Wissenschaft und Perspektiven
Inhaltsverzeichnis

Zusammenfassung ................................................................................................................................. 7

Deep Brain Stimulation: Current State of Research and Future Prospects
Summary ............................................................................................................................................... 11

1 Wissenschaftlicher Hintergrund und klinische Anwendung ...................................................... 15

1.1 Einführung .................................................................................................................................. 15
1.2 Ablauf der Tiefen Hirnstimulation ............................................................................................ 17
1.3 Historische Entwicklung der THS ............................................................................................ 20
1.4 Anatomische Grundlagen und neuronale Netzwerke bei Morbus Parkinson ..................... 22
1.5 Zelluläre und molekulare Wirkmechanismen der THS ......................................................... 26
1.5.1 Inhibition oder Aktivierung von Nervenzellen und neuronalen Schaltkreisen ............... 26
1.5.2 Veränderung der neuronalen Aktivität in Netzwerken ...................................................... 27
1.5.3 Unterdrückung pathologischer Oszillationen ...................................................................... 28
1.5.4 Veränderungen der Neurotransmission an GABAergen und dopaminergen Synapsen ...... 29
Fazit Kapitel 1.5 ............................................................................................................................... 29
1.6 Wirkung der THS auf die Funktion und Plastizität neuronaler Schaltkreise, auf die adulte Neurogenese und das Überleben von Neuronen ...................................................... 30
Fazit Kapitel 1.6 ................................................................................................................................ 34

2 Klinische Indikationen der THS und Stand der klinischen Forschung ..................................... 35

2.1 Indikationen der THS in der Neurologie ................................................................................. 35
2.1.1 Morbus Parkinson .................................................................................................................. 35
2.1.2 Tremor ................................................................................................................................ 37
2.1.3 Dystonien und andere hyperkinetische Bewegungsstörungen ......................................... 38
2.1.4 Epilepsie ............................................................................................................................... 41
2.1.5 Schmerz und Clusterkopfschmerz ...................................................................................... 43
2.2 Indikationen der THS in der Psychiatrie ................................................................................. 44
# Inhaltsverzeichnis

2.2.1 Depression ................................................................. 45
2.2.2 Zwangserkrankungen .................................................. 48
2.2.3 Substanzabhängigkeit und Suchterkrankungen .......... 49
2.2.4 Schizophrenie .............................................................. 49
2.3 THS bei weiteren neuropsychiatrischen Erkrankungen ...... 50
2.3.1 Tourette-Syndrom ..................................................... 50
2.3.2 Demenz ................................................................. 52
2.3.3 Adipositas ............................................................... 53

**Fazit Kapitel 2** .............................................................. 54

3 Risiken der THS ............................................................... 55
3.1 Chirurgische Nebenwirkungen ....................................... 55
3.1.1 Frühkomplikationen .................................................. 55
3.1.2 Spätkomplikationen und chronische Nebenwirkungen ... 56
3.1.3 Infektionen .............................................................. 56
3.2 Stimulationsinduzierte Effekte auf die Kognition ............ 57
3.3 Effekte der STN-Stimulation bei Morbus Parkinson auf Kognition und Verhalten .... 58
3.4 THS in anderen Zielregionen oder bei anderen Erkrankungen als Morbus Parkinson .... 61
3.5 Auswirkungen der THS auf Identität und soziale Bezüge .... 61

**Fazit Kapitel 3** .............................................................. 62

4 Ethische und rechtliche Gesichtspunkte .......................... 64
4.1 Ethische und rechtliche Aspekte bei etablierten Indikationen .... 64
4.1.1 Einwilligung nach Aufklärung und Beratung ............... 64
4.1.2 Ethische Aspekte bei nicht intendierten Effekten der THS .... 65
4.2 Enhancement .............................................................. 66
4.3 Patientenauswahl bei anerkannten Indikationen .............. 67
4.4 Ethische und rechtliche Aspekte bei Ausweitung der Indikationsstellung ............. 67
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>Anforderungen des Medizinproduktegesetzes</td>
<td>69</td>
</tr>
<tr>
<td>4.6</td>
<td>Nicht anwendbare Regelungen</td>
<td>70</td>
</tr>
<tr>
<td>4.7</td>
<td>Haftungsrechtliche Aspekte im Zusammenhang mit der THS</td>
<td>70</td>
</tr>
<tr>
<td>4.8</td>
<td>Rahmenbedingungen zur Erfüllung der MPG-Vorschriften und Registrierung</td>
<td>71</td>
</tr>
<tr>
<td>Fazit</td>
<td>Kapitel 4</td>
<td>73</td>
</tr>
<tr>
<td>5</td>
<td>Klinische und grundlagenwissenschaftliche Forschung auf dem Gebiet der THS in Deutschland</td>
<td>74</td>
</tr>
<tr>
<td>5.1</td>
<td>Klinische Forschung und Industrie</td>
<td>75</td>
</tr>
<tr>
<td>5.2</td>
<td>Besonderheiten der klinischen Forschung im Bereich der THS</td>
<td>77</td>
</tr>
<tr>
<td>5.3</td>
<td>Insertionseffekt</td>
<td>80</td>
</tr>
<tr>
<td>5.4</td>
<td>Neurostimulationseffekt</td>
<td>80</td>
</tr>
<tr>
<td>5.5</td>
<td>Medikamenteneffekte</td>
<td>81</td>
</tr>
<tr>
<td>5.6</td>
<td>Design von randomisierten Studien zum Nachweis der Krankheits-modifizierenden Langzeiteffekte</td>
<td>81</td>
</tr>
<tr>
<td>5.7</td>
<td>Vergleich der THS-Effekte mit anderen etablierten Therapieverfahren</td>
<td>83</td>
</tr>
<tr>
<td>5.8</td>
<td>Registrierung und Erfassung von Langzeiteffekten außerhalb klinischer Studien</td>
<td>84</td>
</tr>
<tr>
<td>Fazit</td>
<td>Kapitel 5</td>
<td>86</td>
</tr>
<tr>
<td>6</td>
<td>Anforderungen an Forschungstrukturen und Forschungsförderung zur Weiterentwicklung der THS</td>
<td>87</td>
</tr>
<tr>
<td>7</td>
<td>Autoren und Mitglieder der AG THS</td>
<td>90</td>
</tr>
<tr>
<td>8</td>
<td>Annex zur THS-Stellungnahme</td>
<td>94</td>
</tr>
<tr>
<td>9</td>
<td>Offenlegung möglicher Interessenkonflikte der Mitglieder der AG THS</td>
<td>95</td>
</tr>
<tr>
<td>10</td>
<td>Literatur</td>
<td>98</td>
</tr>
<tr>
<td>11</td>
<td>Note Added in Proof</td>
<td>118</td>
</tr>
<tr>
<td>12</td>
<td>Abkürzungsverzeichnis und Glossar</td>
<td>119</td>
</tr>
</tbody>
</table>
Abbildungen

Abbildung 1: Grundkomponenten eines THS-Systems ................................................................. 19

Abbildung 2: Anatomie der Basalganglien mit Putamen .......................................................... 24

Abbildung 3: Vereinfachtes Verschaltungsschema zur Einbettung der Basalganglien in neuronale Netze des Gehirns ........................................................................................................... 25
Zusammenfassung


nur wenig befriedigende Therapieoptionen gab. Langfristige Effekte, Nebenwirkungen und vor allem die Wirkmechanismen sind bei vielen dieser neuen Indikationen noch unklar. Aus diesem Grund gibt es auch Stimmen, die diesem Druck, die THS für weitere neurologische und psychiatrische Erkrankungen einzusetzen, nicht nachgeben möchten ohne eine vorbereitende und begleitende Forschung, mit der die funktionellen und neurobiologischen Wirkmechanismen der THS bei solchen neuen Indikationen untersucht werden. Bei vielen neuen Indikationen für die THS wird deutlich, dass die bisherigen Ergebnisse sowohl durch weiterführende Grundlagenuntersuchungen zur Aufklärung von Wirkmechanismen als auch durch weiterführende kontrollierte klinische Studien geprüft werden müssen. Die klinischen Studien sollten zudem durch bildgebende Verfahren sowie durch weitere Verfahren zur Erfassung elektrophysiologischer und funktioneller neuronaler Netzwerkaktivität und deren Beeinflussung durch die THS ergänzt werden, des Weiteren durch geeignete qualitative und quantitative Instrumente zur Erfassung von Nebenwirkungen und Auswirkungen der Behandlung auf die Lebensqualität in einem weiten Verständnis.


Aktuell wird in den USA diskutiert, klinische Therapiestudien für psychiatrische Erkrankungen nur dann mit Mitteln des National Institute of Mental Health (NIMH) zu fördern, wenn sie darauf ausgerichtet sind, die zugrunde liegenden Wirkmechanismen im Gehirn aufzuklären und besser verstehen zu können. Nur so können unerwünschte Nebenwirkungen und schädliche Auswirkungen neuer Behandlungsmethoden bestmöglich erfasst und minimiert werden sowie Patientinnen und Patienten so aufgeklärt werden, dass sie in der Lage sind, die Chancen und Risiken dieser neuen Behandlungsmethoden fundiert einschätzen zu können.

Die THS hat sich aus der klinischen Beobachtung entwickelt, dass eine Stimulation bestimmter Areale des Gehirns Symptome von Erkrankungen, wie beispielsweise den Tremor bei der par-
kinsonschen Erkrankung, positiv beeinflusst. Dass die Stimulation in dieser Weise wirkt, war im Wesentlichen unerwartet. Die THS-Therapie wurde also letztlich aufgrund eines Zufallsbe-
funds entwickelt und nicht im Rahmen eines Forschungsprogramms, das sich die Behandlung
er einer Erkrankung zum Ziel gesetzt hat. Dies trifft auch auf andere wichtige Innovationen in der
Medizin zu, wie die Entdeckung der Röntgenstrahlung oder die Entdeckung von Helicobacter
pylori als Ursache von Magengeschwüren, die beide mit dem Nobelpreis für Medizin ausge-
zeichnet wurden. Unerwartete Entdeckungen erfordern eine flexible Forschungsförderung, die
die neuen Erkenntnisse zeitnah aufgreift und die Entwicklung von der klinisch-wissenschaftli-
chen Beobachtung bis zur etablierten Therapie begleitet.

Der Einsatz der THS bei neuen Indikationen, vor allem bei psychiatrischen Erkrankungen,
erfordert einen engen Verbund nicht nur mit der Grundlagenforschung, sondern auch mit der
Medizintechnik und der Ethik. Die Planung neuer klinischer Studien muss auf dem aktuellen
Stand des Wissens sowohl aus der Klinik als auch aus der Grundlagenforschung begrün-
det sein und sollte nicht nur die Erfassung klinischer Effekte in definierten Beobachtungs-
zeiträumen, sondern auch eine Erweiterung des Wissens über Krankheitsmechanismen und
Gehirnfunktion zum Ziel haben. Die Aufnahme und Dokumentation aller Fälle in geeigne-
tete Studien- und Patientenregister ist dazu eine wichtige Voraussetzung. Da die systematische
Erfassung von Effekten der THS über lange Zeiträume nicht nur aus wissenschaftlicher Sicht
von großem Interesse ist, sondern auch aus der Perspektive der Versorgung und der Quali-
tätssicherung klinischer Behandlungen, kann dieser Aspekt nur dann zufriedenstellend gelöst
werden, wenn Wissenschaft, Institutionen mit Zuständigkeit für die Qualitätssicherung medizi-
nischer Therapien sowie Institutionen für die medizinische Versorgung wie die Krankenkassen
in die Etablierung eines solchen Registers eingebunden werden und die Planungen von Be-
ginn an mit dem Ziel verfolgt werden, solche Register auch international zu vernetzen und für
wissenschaftliche Analysen zugänglich zu machen.

Dies setzt Forschungsstrukturen an klinischen Einrichtungen voraus, an denen die THS ange-
wendet und für neue Indikationen getestet und weiterentwickelt wird. Eine Routineversorgung
von Patienten von der neuropsychiatrischen Diagnostik über die Implantation des THS-Sys-
tems bis zur medizinischen Nachsorge allein ist nicht ausreichend, um die Methode weiter-
zuentwickeln und neue Indikationen, insbesondere auf dem Feld der psychiatrischen Erkran-
kungen, zu erweitern. Dazu bedarf es eines engen Verbunds zwischen klinischer Forschung,
kiniknaher patientenorientierter Forschung, vor allem im Bereich neuer und experimenteller
bildgebender Verfahren und klinischer Elektrophysiologie, und auch der Einbeziehung der
neurobiologischen Grundlagenforschung sowie der Medizintechnik.
Diese Stellungnahme analysiert den derzeitigen Stand der Forschung auf dem Gebiet der THS und spricht Herausforderungen an, die mit der Weiterentwicklung dieser Therapiemethode in den Fächern Neurologie und Psychiatrie verbunden sind. Sie richtet sich an Patientinnen und Patienten, behandelnde Ärztinnen und Ärzte, Forscherinnen und Forscher, Einrichtungen der Wissenschaftsförderung und der Politik sowie an Träger des Gesundheitswesens.

Im Einzelnen behandeln

• **Kapitel 1** die relevanten Forschungsgrundlagen, den derzeitigen Stand des Wissens über die Wirkmechanismen der THS und die aktuellen Konzepte zur Wirkung der THS auf die Funktion und Plastizität neuronaler Schaltkreise;

• **Kapitel 2** den derzeitigen Stand des Wissens zu Anwendungen der THS bei neurologischen Erkrankungen wie Morbus Parkinson, Epilepsie, psychiatrischen Erkrankungen wie Depression, Zwangserkrankungen und Schizophrenie bis hin zu neuen Indikationen zur Therapie der Demenz;

• **Kapitel 3** die Risiken der THS, die unmittelbar mit der Implantation und der Anwendung der derzeit gebräuchlichen Stimulationssysteme bei Patientinnen und Patienten verbunden sind, darunter auch die Risiken auf Kognition und Verhalten, die bei neuen Indikationen auf dem Gebiet der Psychiatrie zu erwarten sind;

• **Kapitel 4** die ethischen und rechtlichen Gesichtspunkte, die mit der Anwendung der THS verbunden sind;

• **Kapitel 5** die Rahmenbedingungen, unter denen die THS weiterentwickelt wird, einschließlich Empfehlungen zur Planung von klinischen Studien, die nicht nur die Wirksamkeit erfassen, sondern auch wichtige Rückschlüsse über Langzeiteffekte erlauben im Hinblick auf die Qualitätskontrolle und die Erfassung von Effekten auf die Lebensqualität, die unmittelbar über direkte Krankheitsparameter hinausgehen sowie

• **Kapitel 6** die Anforderungen an Forschungsstrukturen und Forschungsförderung zur Weiterentwicklung der THS.
Deep Brain Stimulation:
Current State of Research and Future Prospects

Summary

A few decades ago, the idea of using electrical pulses to influence brain activity was mainly limited to literary visions of the future. Now, however, it has become an established method in modern medicine. Recent research in modern neurosciences has shown that in order to think, the human brain uses networks localised in various brain regions. There are also central nodes and stimulation centres which connect these networks. Within these nodes, individual functions can be influenced. The term Deep Brain Stimulation (DBS) refers to the application of electrical pulses in brain structures located not on the surface of the brain but deep inside. Electrical stimulation is normally applied to deep-located, functionally important junctions (known as relay centres) of neural networks or the fibre connections within or between these networks. This is why DBS, unlike other methods such as magnetic stimulation, which can be used to stimulate the cortex, always requires surgical intervention to implant a stimulation system.

Since the first reports on the effects of electrical stimulation on tremors and other symptoms of Parkinson’s disease between 1987 and 1994, DBS has also been used to treat other diseases involving movement disorders, such as tremor and dystonia. Some success has also been achieved in the treatment of epilepsy and treatment-refractory pain. However, these reports are only based on observations with small numbers of patients. In recent years, DBS has also become increasingly important in the range of treatments used for psychiatric disorders. In particular, the use of DBS to treat depression has been extensively studied over the past 10 years. In addition, initial trials involving patients with obsessive-compulsive disorder, Tourette’s syndrome and addiction disorders have shown promising results that merit further research. These reports on the effects of DBS also present new perspectives for the treatment of common diseases such as Alzheimer’s disease and obesity. However, there is no evidence of effectiveness for these conditions from controlled trials yet. So far, large-scale trials that could establish DBS as a standard therapy have only been carried out for Parkinson’s disease. As a result of such controlled clinical trials for Parkinson’s disease and a constantly growing body of knowledge on altered neural network activity between brain regions in diseases of the nervous system, there is growing pressure to use this therapeutic method for other neuropsychiatric disorders for which there are currently no treatment options, or for which the only available options are unsatisfactory. For many of these new indications, the long-term effects, side-effects and in particular the mechanisms of action are still unclear. Consequently, there have also been calls not to yield to the pressure to use DBS for other neurological and psychiatric...
disorders without preparatory and accompanying research to investigate the functional and neurobiological mechanisms of action of DBS in connection with new indications. For many new indications for DBS, it is clear that the results obtained so far through basic research into the mechanisms of action and through controlled clinical trials must be verified. Clinical trials should also be supplemented by imaging techniques and other methods to record electrophysiological and functional neural network activity and how it is influenced by DBS, as well as by suitable qualitative and quantitative instruments to record the side-effects of the treatment and its impacts on quality of life in a broad sense.

Especially in the case of Parkinson’s disease, DBS causes subtle behavioural changes, noticed by patients and people around them, which are often perceived as ‘personality changes’. It seems necessary to systematically study these changes, which are very important to patients and their family members, and their effects on patient well-being. Therefore, analysis of such effects needs to be included in future studies on the effectiveness of DBS in Parkinson’s and other indications. This will result in a more patient-oriented and less disease-oriented consideration of the intervention, including an open ethical assessment in individual cases.

In the USA there is currently discussion of the proposal that clinical treatment trials for psychiatric disorders should only be funded by the National Institute of Mental Health (NIMH) if their aim is to investigate and understand the basic mechanisms of action in the brain. This is the only way in which to effectively discover and minimise undesirable side-effects and harmful effects of new treatments and explain the facts to patients in such a way that they can make an informed evaluation of the opportunities and risks of these new treatments.

DBS developed from the clinical observation that stimulating certain areas of the brain had a positive effect on symptoms of some diseases such as tremor in Parkinson’s disease. This effect was largely unexpected. Thus, DBS therapy developed as the result of a chance finding and not through a research programme designed to find a treatment for a particular condition. This is also true of other important innovations in medicine, such as the discovery of X-rays or the discovery of Helicobacter pylori as the cause of stomach ulcers, both of which won the Nobel Prize for medicine. Unexpected discoveries require flexible research funding that responds swiftly to new discoveries and supports the development process from clinical/scientific observation to established therapy.
The use of DBS for new indications, primarily psychiatric disorders, demands close links not only with basic research, but also with medical engineering and ethics. The planning of new clinical trials must be based on the current state of knowledge in both clinical practice and basic research. As well as recording clinical effects over defined periods of observation, it should also expand our understanding of the mechanisms of disease and of brain function. The recording and documentation of all cases in suitable trial and patient registers is an important element in this context. Because the systematic long-term documentation of the effects of DBS is of great interest not only scientifically but also from the point of view of the provision and quality assurance of clinical treatments, this aspect can only be addressed satisfactorily if researchers, institutions with responsibility for the quality assurance of medical treatments and healthcare institutions such as health insurers are involved in the establishment of such a register, and trials are planned from the outset with the aim of networking such registers both nationally and internationally and making them accessible for scientific analysis.

This requires that clinical institutions have the necessary research structures with which to use DBS and test and develop it for new indications. The routine handling of patients, from neuropsychiatric diagnosis to implantation of the DBS system and medical aftercare, is not sufficient on its own to further develop the method and expand it to new indications, particularly in the field of psychiatric disorders. Achieving this requires a close link between clinical research and patient-oriented basic research, especially in the area of new and experimental imaging techniques and clinical electrophysiology, and the incorporation of model oriented neurobiological research and medical engineering.

The article analyses the current state of the art in relation to DBS and discusses challenges associated with the further development of this method of therapy in the fields of neurology and psychiatry. It is aimed at patients, physicians, researchers, research funding institutions, policymakers and healthcare bodies.

The individual chapters cover the following topics:

• **Chapter 1** The relevant research basis, the current state of knowledge relating to the mechanisms of action of DBS and current concepts of the effect of DBS on the function and plasticity of neural circuits

• **Chapter 2** The current state of knowledge relating to the use of DBS for neurological conditions such as Parkinson's disease and epilepsy, psychiatric disorders such as de-
expression, obsessive-compulsive disorder and schizophrenia, and new indications for the treatment of dementia

- **Chapter 3** The risks of DBS which are directly associated with the implantation and use of currently common stimulation systems and the potential risks to cognition and behaviour in connection with new psychiatric indications

- **Chapter 4** The ethical and legal considerations associated with the use of DBS

- **Chapter 5** The framework within which DBS should continue to be developed, including recommendations on the planning of clinical trials that both document effectiveness and permit important conclusions to be drawn about long-term effects for the purposes of quality control and documenting effects on quality of life that extend beyond direct disease parameters

- **Chapter 6** Requirements in terms of research structures and research funding for the further development of DBS
1 Wissenschaftlicher Hintergrund und klinische Anwendung

1.1 Einführung


Der Begriff „Tiefe Hirnstimulation“ (THS) bezieht sich auf die Applikation elektrischer Impulse in Hirnstrukturen, die sich anatomisch nicht an der Hirnoberfläche, sondern in der Tiefe dieses Organs befinden. Elektrisch stimuliert werden im Regelfall die in der Tiefe lokализierten funktionell wichtigen Schaltstellen neuronaler Netzwerke oder die Faserverbindungen innerhalb beziehungsweise zwischen solchen Netzwerken. Mit der Anwendung der THS ist immer ein operativer Eingriff zur Implantation eines Stimulationssystems verbunden. Im Gegensatz dazu interagieren andere zur elektrischen Stimulation von Hirngewebe geeignete Verfahren (z. B. transkranielle Magnetstimulation) primär mit elektrischen Leitungseigenschaften beziehungsweise -funktionen der Hirnoberfläche und können ohne Operation von außen angewendet werden.

Bisher waren die positiven Ergebnisse der THS – vor allem bei der Parkinson’schen Erkrankung (und bei chronischen Schmerzen) – eher auf klinische Beobachtungen begründet als auf solide Kenntnisse der beteiligten Vorgänge im Gehirn des Patienten. Es war bislang aus technischen Gründen schwierig, mit bildgebenden Verfahren wie der Magnetresonanztomografie (MRT) die funktionellen Änderungen der Gehirnaktivität während der THS zu untersuchen. Auch die technischen Möglichkeiten, bei THS während der Behandlung veränderte neuronale Aktivität in den stimulierten Regionen und in verbundenen Netzwerken abzuleiten, stehen erst seit Kurzem zur Verfügung. Doch gerade die Anwendung solcher bildgebender Verfahren und neuer Methoden zur elektrophysiologischen Ableitung bei THS-behandelten Patientinnen und Patienten könnte einen wichtigen Beitrag dazu leisten, das Verständnis der neuroelektrischen und metabolischen Dynamik von neuronalen Netzen zu erweitern und die Auswirkungen sol-

rer Ausweitung. Auch für eine aufgeklärte, informierte Einwilligung ist wichtig, dass die Wis-
senschaft Antworten zu bisher unbeantworteten Fragen gibt, gerade bei neuen Indikationen,
bei denen Art, Umfang und Tragweite die Wirkweise der THS und Langzeiteffekte noch nicht
ausreichend bekannt sind. Dazu gehören Informationen über mögliche Symptombesserungen
und die zugrunde liegenden Wirkweisen der THS ebenso wie über die Risiken der Therapie.
Erst auf dieser Grundlage ist es den Patientinnen und Patienten möglich, eine Entscheidung
darüber zu treffen, ob sie diese Behandlung für sich wünschen oder nicht.

Die Deutsche Forschungsgemeinschaft hat seit mehreren Jahrzehnten die Entwicklung der
THS an deutschen Universitätsklinika und verbundenen universitären und außeruniversitären
Forschungseinrichtungen begleitet und unterstützt. Ein wichtiges Anliegen war es dabei, inter-
disziplinäre Forschungsansätze einzufordern und zu stärken und so eine Grundlage dafür zu
schaffen, dass nicht nur die klinische Entwicklung, sondern auch die Aufklärung von Wirkme-
chanismen, die Erhebung der Auswirkungen der THS auf psychosozialer Ebene und eine ethi-
sche Analyse in synergistische Forschungskonzepte einbezogen werden. Für solche synergis-
tischen Forschungsansätze sind strukturierte, inter- und multidisziplinäre Förderprogramme
wie Sonderforschungsbereiche und Klinische Forschergruppen eine ideale Voraussetzung.

Ziel dieser Publikation ist es, den Stand der aktuellen Forschung auf dem Gebiet der THS
bei Erkrankungen des Nervensystems darzustellen, und die Herausforderungen herauszu-
arbeiten, denen sich dieses Forschungsfeld stellen muss. Dies ist nicht nur von Interesse für
Patienten und behandelnde Ärzte, sondern auch von Bedeutung für wissenschaftspolitische
Entscheidungsträger in der Forschungsförderung, der Politik und im Gesundheitswesen.

1.2 Ablauf der Tiefen Hirnstimulation (THS)

Mit der Anwendung der THS ist immer ein operativer Eingriff verbunden. Die stereotak-
tisch-neurochirurgische Implantation der Hirnelektroden wird abhängig von stimulierter Hirnre-
gion und/oder behandelter Erkrankung wahlweise in örtlicher Betäubung oder in Vollnarkose
durchgeführt (Voges et al., 2007; Voges et al., 2009; Voges and Krauss, 2010). Ein Wachein-
griff ist immer dann zu empfehlen, wenn eine intraoperative Testung das Behandlungsergebnis
vorhersagt. Die Implantation der Verbindungskabel und des internalisierten Pulsgebers (IPG)
erfolgt im Regelfall in Allgemeinnarkose.
Am Operationstag sind zur Vorbereitung des Eingriffs die folgenden Schritte erforderlich: (i) Fixierung eines mechanischen Referenzierungssystems (stereotaktischer Rahmen) am Kopf des Patienten, (ii) Durchführung einer diagnostischen Schichtbilduntersuchung des Gehirns (MRT, optional zusätzlich auch eine Computertomografie (CT)) mit angelegtem Referenzierungssystem, (iii) computerassistierte, dreidimensionale Eingriffsplanung auf der Basis hochauflösender MRT-Bilder zur Festlegung eines Zielpunktes für die Platzierung der Stimulationselektrode und zur Kontrolle des Weges, den die Elektrode durch das Hirngewebe nimmt. Während der Operation wird das Planungsergebnis mithilfe eines mechanischen Zielgeräts, das auf den stereotaktischen Rahmen aufgesetzt wird, millimetergenau in das Gehirn des Patienten übertragen. Bei Wacheingriffen werden im Bereich der Zielregion sowohl elektrophysiologische Messungen als auch elektrische Teststimulationen durchgeführt, die zusammen mit der intraoperativen klinisch-neurologischen Untersuchung die Definition eines funktionell optimalen Stimulationsorts erlauben. Bei klinisch gut definierten und etablierten Zielpunkten kann nach Implantation der Stimulationselektrode noch am gleichen Tag der Impulsgeber (IPG) implantiert werden (siehe Abbildung 1).
In klinisch unklaren Fällen oder zur Bearbeitung wissenschaftlicher Fragestellungen können die Hirnelektroden zunächst für mehrere Tage nach außen geleitet werden. Neue technische Entwicklungen erlauben erste Ableitungen von lokalen Feldpotenzialen (LFP) aus der Zielregion unabhängig von der Operation.


1.3 Historische Entwicklung der THS


Etwa zeitgleich gab es auch Bemühungen, psychiatrische Erkrankungen sowie schwere chronische Schmerzen durch einen funktionell-neurochirurgischen Eingriff innerhalb des Stirnhirns (Frontallappen des Großhirns) zu bessern. Zusammen mit dem Chirurgen Almeida Lima entwickelte der portugiesische Neurologe Egas Moniz eine Operationstechnik, um mithilfe eines geeigneten Instruments (Leukotom) die langen Fortsätze von Nervenzellen im Bereich...


Einzelfallberichte zur Neurostimulationstherapie bei Patientinnen und Patienten mit neuropsychiatrischen Erkrankungen, Bewegungsstörungen, schweren Schmerzzuständen oder Epilepsie wurden bereits in den 1960er- und 1970er-Jahren des letzten Jahrhunderts veröffentlicht,

1.4 Anatomische Grundlagen und neuronale Netzwerke bei Morbus Parkinson

Da die Anwendung der THS bei Morbus Parkinson bisher am besten untersucht ist und sich viele neue Anwendungen der THS an diesen Ergebnissen orientieren, stehen die anatomischen Grundlagen der THS bei dieser Erkrankung hier im Mittelpunkt. Im Folgenden sollen deshalb einige für die THS bei Morbus Parkinson wichtige Gehirngebiete und deren Einbindung in neuronale Regelkreise funktionell und anatomisch beschrieben werden.


Funktionell rechnet man zu den Basalganglien noch die Substantia nigra (schwarze Substanz, SN), ein im Mittelhirn gelegenes Gehirnareal, und den Nucleus subthalamicus (STN).


im indirekten Basalganglienweg. Der hyperdirekte kortiko-subthalamische Pfad ist möglicherweise auch für die Erklärung von THS-Effekten bedeutsam, weil verschiedene experimentelle Arbeiten darauf hindeuten, dass die Nucleus-subthalamicus-Stimulation über eine antidrome Erregung des hyperdirekten Pfades pathologische Oszillationen im motorischen Cortex bei der Parkinsonkrankheit unterbindet (Gradinaru et al., 2009; Li et al., 2012).

1.5 Zelluläre und molekulare Wirkmechanismen der THS


1.5.1 Inhibition oder Aktivierung von Nervenzellen und neuronalen Schaltkreisen

Das Konzept einer durch die hochfrequente THS (HF-THS) induzierten lokalen Inhibition wurde durch elektrophysiologische Untersuchungen unterstützt, bei denen innerhalb der Basalganglien die Aktivität von Nervenzellen in unmittelbarer Nähe zur Stimulationselektrode (Abstand von etwa 250 Mikrometer oder mehr) aufgezeichnet wurde. Im Tiermodell fand man eine ausgeprägte, über Sekunden anhaltende Unterdrückung (Supression) der neuronalen Entladungen im subthalamischen Kern (STN) und im Hauptprojektionsareal, der SNr, sodass man initial von einem Depolarisationsblock als möglichem Mechanismus der THS ausging (Benazzouz et al., 2000; Benazzouz et al., 1995). Ebenso konnte bei Parkinsonpatienten während einer intraoperativen Mikroelektrodenstimulation eine kurzfristige Inhibition der neuronalen Entladung im STN gezeigt werden (Dostrovsky et al., 2000; Filali et al., 2004). Allerdings war diese Inhibition eher auf eine Aktivierung GABAerger Axonterminalen durch die HF-THS und einer daraus resultierenden synaptischen Hemmung im Zielgebiet zurückzuführen. Weiterführende Untersuchungen mit Mikroelektrodenableitungen aus Arealen, die dem Stimulationsort nachgeschaltet sind (z. B. Stimulation im Globus pallidus internus (GPI) und Ableitung im motorischen (VL) Thalamus), wiesen dann auf eine gegenteilige Wirkung hin, also eine Aktivierung von neuronalen Projektionen, die aus der stimulierten Zielregion abgehen (Anderson et al., 2003; Hashimoto et al., 2003). Somit besteht neben dem lokal inhibitorischen Effekt der Stimulation auf das Zellsoma auch ein Effekt auf die weiter reichende Netzwerkaktivität, die am ehesten über eine axonale Aktivierung elektrodennaher Projektionsneurone und affine-
renter Inputs vermittelt wird (McIntyre et al., 2004). Die für diese unterschiedlichen Wirkungen zugrunde liegenden Mechanismen sind noch nicht aufgeklärt. Es ist also auch zukünftig von größter Wichtigkeit, dass die neuronalen Konsequenzen hinsichtlich der Aktivierung oder Inhibierung neuronaler Aktivität unter Umständen in Abhängigkeit von der Entfernung zu den Reizelektroden untersucht werden. So ist es denkbar, dass die hohen elektrischen Felder in der direkten Umgebung der THS-Elektroden vollständig blockiert werden, während in mittleren und größeren Abständen eine dendritische und axonale Aktivierung möglich ist. Insgesamt zeigen die bisherigen Beobachtungen, dass man die Netzwerkeffekte der THS unterschätzt und die lokalen Effekte überschätzt hat.


1.5.2 Veränderung der neuronalen Aktivität in Netzwerken

Neuere Untersuchungen zeigen, dass bei Patientinnen und Patienten mit Bewegungsstörungen abnorme Entladungsmuster und verstärkte synchrone Aktivität von Nervenzellen auftreten (Hammond et al., 2007). So zeigen Einzelzelleableitungen bei Gesunden, zum Beispiel an Neuronen des Globus Pallidus internus (GPi), ein weitgehend reguläres Entladungsmuster (Wichmann et al., 1999), während bei Morbus Parkinson und Dystonie unregelmäßige Entladungen mit intermittierenden Pausen und Bursts auftreten (Tang et al., 2007). Betrachtet man das Entladungsmuster während HF-THS, zeigt sich neben der Zunahme der Entladungsfrequenz in nachgeschalteten Strukturen vor allem eine homöostatische Anpassung der zuvor burstartigen und irregulären Entladungen mit nun stimulussynchronen regulären tonischen Entladungen (Hashimoto et al., 2003; Bar-Gad et al., 2004). Dies deutet darauf hin, dass nicht die erregende oder hemmende Wirkung der THS auf die elektrischen Entladungsmuster allein
ausschlaggebend ist, sondern dass die Rhythmen der neuronalen Aktivität durch die THS positiv verändert werden. Die Erforschung der Grundlagen dieser regulatorischen Veränderungen ist Thema aktueller Forschung und bedarf noch der weiteren Analyse.

1.5.3 Unterdrückung pathologischer Oszillationen

1.5.4 Veränderungen der Neurotransmission an GABAergen und dopaminergen Synapsen


Fazit:


Neue Technologien, wie die Optogenetik, werden es bei Versuchstieren künftig erlauben, Veränderungen der Netzwerkaktivität nach Stimulation definierter neuronaler Elemente gezielt zu untersuchen. Dies ist eine wichtige Voraussetzung für die zukünftige Entwicklung von Neurostimulationssystemen, die selektiver in die Hirnaktivität eingreifen können. Auch im klinischen Bereich bahnen sich auf dem Gebiet der Elektroden- und Schrittmachertechnologie Neuerungen an, die eine bessere Ableitung von Netzwerkaktivitäten am Patienten erlauben, sowohl bei gleichzeitigem Einsatz bildgebender Verfahren als auch bei Langzeitableitungen nach Implantation. Konkret bedeutet das für
Bewegungsstörungen wie die Parkinsonkrankheit, dass pathognomonische Veränderungen wie gesteigerte Synchronisation beziehungsweise Oszillationen und irreguläre neuronale Aktivität noch besser untersucht und zukünftig sogar für die Steuerung der Neurostimulation im Sinne einer „Closed-Loop“-Stimulation eingesetzt werden können.

1.6 Wirkung der THS auf die Funktion und Plastizität neuronaler Schaltkreise, auf die adulte Neurogenese und das Überleben von Neuronen

Während man über die unmittelbaren Effekte der THS auf neuronale Schaltkreise inzwischen einige Erkenntnisse gewonnen hat, weiß man über die langfristigen Auswirkungen auf die Struktur und Funktion von Nervenzellen und neuronalen Verbindungen noch sehr wenig. Ob veränderte neuronale Aktivität synaptische Schaltkreise modifiziert und so protektiv in Krankheitsprozesse eingreifen kann, ist zurzeit Thema von Spekulationen. Eine Reihe von Autorinnen und Autoren beschäftigen sich mit der Frage, ob die THS in der Lage ist, bei der parkinsonschen Erkrankung glutamaterge Projektionen zur Substantia nigra und in andere Bereiche des Gehirns aufrechtzuerhalten, die im Verlauf des degenerativen Krankheitsprozesses verloren gehen. Die chronische Stimulation des Nucleus subthalamicus bei der Ratte, bei der toxisch mit 6-OHDA Morbus-Parkinson-ähnliche Symptome induziert werden, führt zu einer dreifachen Hochregulation der Konzentration des neurotropfen Faktors Brain-derived neurotrophic factor (BDNF) im Striatum (Spieles-Engemann et al., 2010). Dieser Befund weist darauf hin, dass die THS nicht nur die Erregbarkeit von Nervenzellen und neuronalen Netzen beeinflusst, sondern auch regulatorische Prozesse wie die

1. Struktur von Nervenzellen und Synapsen,
2. Neuroprotektion und

Zur Untersuchung solcher Phänomene kommen der Grundlagenforschung neue Methoden zu Hilfe, die es erlauben, einzelne Nervenzellen beziehungsweise Nervenzellgruppen selektiv zu stimulieren und die Auswirkungen auf das gesamte Gehirn zu untersuchen. Mit solchen optogenetischen Stimulationsmethoden konnte im Tiermodell gezeigt werden, dass eine Stimulation der Großhirnrinde eine Aktivierung im Gehirngebiet unterhalb des Thalamus bewirkt und so wesentlich zur Wirkung der THS des STN bei Patienten mit Morbus Parkinson beiträgt (im Fachjargon handelt es sich um eine retrograde Stimulation der hyperdirekten kortiko-subthalamischen Bahnen, siehe Abbildung 3). Es ist derzeit offen, ob diese Aktivierung zu veränder-
ten trophischen Effekten auf Neuronen des Striatum durch kortiko-striatale Afferenzen führt. Tierexperimentelle Daten weisen auf einen solchen Mechanismus hin. Auch nach exogener Stimulation neuronaler Aktivität an der Hirnoberfläche durch Magnetstimulation wird die Freisetzung des neurotrophen Faktors BDNF (brain-derived neurotrophic factor) erhöht, und diese Freisetzung kann zu lang anhaltenden Veränderungen synaptischer Aktivität führen (Fritsch et al., 2010). Ausschaltung der BDNF-Produktion im Zentralnervensystem führt im Mausmodell zu einer chronischen Degeneration striataler Neuronen (Rauskolb et al., 2010). Da BDNF nicht im Striatum selbst produziert wird, sondern von Projektionsneuronen aus der Hirrinde freigesetzt wird, liegt nahe, dass veränderte neuronale Aktivität im Kortex zu einer erhöhten Ausschüttung dieses neurotrophen Faktors führt und dass dieser Mechanismus so auch zu einer neuroprotektiven Wirkung der THS beitragen könnte.

Auch weitere Forschungsergebnisse weisen auf solche neuroprotektiven Effekte hin: Ein positiver Einfluss chronischer STN-THS auf das Überleben von Zellen in verschiedenen Hirnregionen, in denen zeitlebens Neuroneogenese stattfindet (unter anderem im Hippocampus und im Bulbus olfactorius), konnte erstmals im Parkinsonmodell der Ratte nachgewiesen werden (Khaindrava et al., 2011). Ebenso gibt es Hinweise, dass thalamische HFS in der naiven Ratte zu einem Anstieg der hippocampalen Neurogenese beitragen könnte (Toda et al., 2008), ohne dass jedoch Auswirkungen auf die behaviorale Performance nachgewiesen wurden.

THS vermehrt Neuronen beziehungsweise neuronale Stammzellen in bestehende Netzwerke rekrutiert werden könnten, die Methode also chronisch die Funktion des Gehirns beeinflussen könnte, und dass diese Veränderungen dann teilweise irreversibel wären. Aus diesem Grund verdienen diese präliminären Ergebnisse eine hohe Aufmerksamkeit. Weiterführende Untersuchungen zu den Mechanismen, die zu einer Hochregulation von BDNF im Striatum nach Stimulation des STN führen, könnten einen wesentlichen Beitrag dazu leisten, mögliche chronische Veränderungen nach THS besser zu erfassen und zu verstehen.


Im Jahr 2008 berichteten Toda und Mitarbeiter erstmalig über eine signifikante Zunahme hippocampaler Neurogenese nach einstündiger hochfrequenter Stimulation (130 Hz) im Nucleus anterior des Thalamus (ATN), das heißt mit Stimulationsparametern, die mit den bei Patienten angewendeten Werten vergleichbar sind (Kapitel 2.5.4). Dieser Effekt war nach niedrigfrequenter Stimulation mit 10 Hz nicht zu beobachten (Toda et al., 2008). In einer Fortführung dieses Ansatzes konnte gezeigt werden, dass die durch HF-THS im ATN induzierte Stimulation der Neurogenese spezifisch für die SGZ ist, dass sie zur Zunahme der symmetrischen Teilung einer bestimmten Zellpopulation (amplifying neural progenitor cells (ANPs)) innerhalb dieser Region führt und dass dieser Vorgang sich später in einer Zunahme der Zahl neu gebildeter Neuronen innerhalb der SGZ manifestiert (Encinas et al., 2011). Dieses Ergebnis ist aus zwei Gründen von Bedeutung:
(1) Die Hochregulation der Neurogenese wurde nicht durch einen unmittelbar im Hippocampus applizierten elektrischen Stromimpuls, sondern durch Stimulation einer Struktur erreicht, die über die Ausläufer von Nervenzellen innerhalb eines definierten neuronalen Netzwerks (dem sogenannten Papez-Kreis) mit dem Hippocampus verbunden ist.

(2) Die dabei hoch regulierte Klasse von Progenitorzellen (ANPs) reagiert auch auf den positiv neurogenen Effekt der antidepressiv wirkenden Substanz Fluxazin oder körperlicher Anstrengung. Möglicherweise repräsentiert die symmetrische Teilung von ANPs einen Schlüsselschritt einer allgemeinen Antwort auf zellulär wirksame neurogene Stimuli (Encinas et al., 2011). Dies muss jedoch erst durch weiterführende Untersuchungen an geeigneten Modellen geklärt werden.


Fazit:

Im Bereich der tierexperimentellen Grundlagenforschung gibt es eine Reihe von drängenden Forschungsfragen für die kommenden Jahre:

- Welchen Einfluss kann eine invasive Neurostimulation auf die Degeneration, Konnektivität und Kompensationsmechanismen in neuronalen Schaltkreisen nehmen? Wie verändern sich bestehende neuronale Netzwerke unter THS?

- Welche adaptiven Mechanismen löst eine unterschiedlich gestaltete chronische Stimulation in neuronalen Netzwerken aus?

- Wie werden Konnektivitätsmuster durch eine chronische oder intermittierende Stimulation kurz-, mittel- und langfristig verändert?

- Welchen Einfluss kann eine invasive Neurostimulation auf regenerative Mechanismen im zentralen Nervensystem nehmen?

- Welche neuronalen Populationen sind innerhalb eines stimulierten Faserbündels oder Kerngebiets die entscheidenden Strukturen, die einen therapeutischen kurz-, mittel- oder langfristigen Effekt vermitteln?
2 Klinische Indikationen der THS und Stand der klinischen Forschung

2.1 Indikationen der THS in der Neurologie


2.1.1 Morbus Parkinson


Seit 2012 erlauben neue THS-Systeme mit bis zu acht Kontakten die präzise Steuerung von austretendem Strom an jedem einzelnen Kontakt der THS-Elektrode. Eine erste euro-
päische multizentrische Studie zur THS im STN mit diesen neuen Systemen an Patientinnen und Patienten mit Morbus Parkinson zeigte erhebliche motorische Verbesserungen von 62,4 Prozent (Timmermann et al., 2015). Neuartige Elektroden, die nun auch eine Steuerung von Strom in unterschiedliche Richtungen erlauben (sogenannte „directional leads“) sind seit Ende 2015 in Deutschland zugelassen und werden derzeit in klinischen Studien untersucht (DRKS00009530).

Weiterhin aktuell beforschte klinische Fragen sind darüber hinaus der optimale Zielpunkt für die THS bei Morbus Parkinson, wobei der Nucleus subthalamicus als Hauptzielgebiet gilt. Vergleichende Studien zur Stimulation im Globus pallidus internus und Nucleus subthalamicus haben keine Überlegenheit für ein Zielgebiet aufzeigen können (Weaver et al., 2012; Follett et al., 2010). Für die Behandlung der axialen Symptome, insbesondere des Freezing, werden derzeit neue Stimulationsorte (Pedunculopontine Nucleus, PPN) an sehr kleinen Gruppen von fünf bis sechs Patientinnen und Patienten beforscht (Thevathasan et al., 2011), die nach niedrigerfrequenter Stimulation (30 Hz) erste mäßige Verbesserungen bei Freezing, Gangstörungen und gestörter Körperhaltung zeigen.

2.1.2 Tremor

thalamischen Stimulation sind eine Sprechstörung und eine leichte Gangstörung. Pathophysiologischer Mechanismus der effektiven THS zur Behandlung von Tremor ist wahrscheinlich die Blockade pathologischer oszillatorischer Aktivität in einem zerebello-thalamo-kortikalen Netzwerk (Schnitzler et al., 2009). Neue Befunde der MRT-basierten Traktographie zeigen, dass eine effektive THS zur Suppression des Tremors an Punkten appliziert wird, die in dieses zerebello-thalamo-kortikale Netzwerk direkt projizieren, während weniger effektive Stimulationsorte auch in geringerem Maß anatomische Verbindungen mit dem beschriebenen Netzwerk aufweisen (Klein et al., 2012).

Die THS bei Patienten mit unterschiedlichen Tremorsyndromen ist zahlenmäßig in der klinischen Anwendung weniger häufig als die THS bei Morbus Parkinson. Eine Reihe von Forschungsfragen sind in den nächsten Jahren für diese Formen von Tremor von vordringlicher Bedeutung: Die klinische Evidenz zur Wirksamkeit der THS in einer Reihe von Tremorsyndromen – wie dem Essenziellen Tremor, vor allem aber auch zum Beispiel dem Tremor bei Multipler Sklerose – ist insgesamt als unzureichend anzusehen, und es besteht ein erheblicher Bedarf an klinischen Studien (Timmermann et al., 2009) in Verbund mit modernen bildgebenden Verfahren. In den letzten Jahren wurde ebenfalls in ersten Pilotstudien deutlich, dass möglicherweise die Anwendung von modernen MRT-basierten Verfahren zur Darstellung der anatomischen Konnektivität die Ergebnisse der THS, insbesondere bei der Behandlung des Tremors, erheblich verbessern könnte (Coenen et al., 2011a; Klein et al., 2012). Ein weiteres bislang neurobiologisch nicht verstandenes, klinisch aber hoch relevantes Problem ist eine Habituation, i. e. der über die chronische Stimulation nachlassende Effekt der THS bei Tremor (Barbe et al., 2011b). Ferner ist nach wie vor noch nicht abschließend geklärt, ob die Stimulation im Vim des Thalamus das klinische bessere Maß an Tremorsuppression und Nebenwirkungen im Vergleich zur Stimulation in subthalamischen Faserbahnen bietet (Barbe et al., 2011a; Herzog et al., 2007). Völlig ungeklärt bleibt bislang ferner die Frage, ob gerade bei der Suppression von einem oft inkonstanten klinischen Symptom wie dem Tremor nicht eine „Closed-Loop“-Stimulation, i. e. die Berücksichtigung pathologischer neuronaler Aktivität als „Trigger“ für eine therapeutische Stimulation, der hochfrequenten chronischen Dauerstimulation überlegen ist.

2.1.3 Dystonien und andere hyperkinetische Bewegungsstörungen

Der Begriff Dystonie bezeichnet eine heterogene Gruppe von Bewegungsstörungen, die durch unwillkürliche Verkrampfungen der Muskulatur und dadurch resultierende abnorme Körperhaltungen charakterisiert sind. Dystonien werden klinisch anhand dreier Achsen klassifiziert,

Für die idiopathische, generalisierte und segmentale Dystonie mit Beginn im Kindes- oder Erwachsenenalter liegen Ergebnisse aus einer französischen und einer deutschen multizentrischen Studie vor, wobei die deutsche Studie erstmals überhaupt für die THS ein randomisiertes und Plazebo-kontrolliertes Studiendesign aufwies. Beide Studien zeigten eine Verbesserung der motorischen Symptome um etwa 50 Prozent (Vidailhet et al., 2005; Kupsch et al., 2006). Diese Ergebnisse waren bahnbrechend, weil für die schweren Dystonien aufgrund der nur wenig wirksamen pharmakologischen Optionen und der naturgemäßen Limitationen in der Injektionstherapie mit Botulinumtoxin bislang keine befriedigenden medikamentösen Behandlungsoptionen existieren.

Diese Therapieerfolge haben zu einer Ausweitung des Indikationsspektrums auf fokale und sekundäre Dystonien geführt, die derzeit beforscht werden. Erste Ergebnisse für Studien bei zervikaler Dystonie mit kleinen Patientengruppen \((n = 10)\) liegen bereits vor, die eine signifikante Verbesserung der motorischen Symptome, Behinderung und Schmerzen zeigen (Kiss et al., 2007). Hierbei gilt, dass die Behandlung mit Botulinumtoxin nach wie vor die primäre Therapie für fokale Dystonie darstellt, und nur in ausgewählten, meist schweren Fällen eine Therapieeskalation zu einer THS notwendig wird. Eine randomisierte sham-kontrollierte Studie der deutschen Studiengruppe an 68 Patienten mit zervikaler Dystonie konnte die Verbesserung der Bewegungsstörung unter pallidaler THS bestätigen (Volkmann et al., 2014).


Für eine andere Form der sekundären Dystonie, die tardive Dystonie, die erst im Erwachsenenalter induziert durch Medikamente auftritt, konnte gezeigt werden, dass die Symptomlinderung durch THS ähnlich ausgeprägt ist wie bei idiopathischen Dystonien (Trottenberg et al., 2005; Gruber et al., 2009). Darüber hinaus sind seltenere hyperkinetische Bewegungsstörungen in kleinen Fallzahlen auch durch pallidale Stimulation verbessert worden, darunter das Myoklonus-Dystonie-Syndrom (Gruber et al., 2010).


2.1.4 Epilepsie

Insgesamt befindet sich das Feld der THS bei Epilepsie in einem frühen, explorativen Stadium, und trotz des Vorliegens einer ersten randomisierten kontrollierten Studie ist ein erheblicher Forschungsbedarf zu verzeichnen.

2.1.5 Schmerz und Clusterkopfschmerz


Ergebnisse nach Anwendung bildgebender Verfahren bei Schmerzpatienten legen auch einen grundlegenden Neuansatz bei der Zielpunktwahl zur THS nahe. Im Falle von Clusterkopfschmerz (CK), einem der schmerzhaftesten Zustände, die Patienten überhaupt erleben können, lässt sich zum Beispiel durch funktionelle Bildgebung ein umschriebenes Gewebeareal im Hypothalamus nachweisen, das spezifisch in Zusammenhang mit den Schmerzattacken aktiviert ist (May et al., 1998). Dieses Bildsignal wurde bereits bei CK-Patienten erfolgreich als Zielregion zur Implantation von Stimulationselektroden verwendet (Fontaine et al., 2010; Franzini et al., 2003). Auch für diese Anwendung fehlen noch Daten aus größeren, methodisch gut durchgeführten klinischen Studien, die die Effekte der hypothalamischen THS an einer größeren Zahl von Patientinnen und Patienten dokumentieren.

Inzwischen ist durch moderne Bildgebungsverfahren innerhalb des Gehirns belegt, welche Hirnregionen als Teil einer „Schmerzmatrix“ an der Verarbeitung akuter Schmerzsignale beteiligt sind (Legrain et al., 2011; Mouraux et al., 2011). Weiterhin werden bei Patienten mit chronischen Schmerzen Veränderungen des Aktivitätsstatus dieser Matrix beziehungsweise die
Aktivierung auch anderer Hirnregionen in Zusammenhang mit der Weiterleitung von Schmerzreizen zunehmend besser verstanden (Saab, 2013; Saab, 2012).


2.2 Indikationen der THS in der Psychiatrie

enten mit Negativsymptomatik bei Schizophrenie mit der Absicht, im Nucleus accumbens oder in der ventralen tegmentalen Area (VTA) bei jeweils drei Patienten eine THS vorzunehmen (NCT01725334). Ergebnisse dieser Studie wurden bislang nicht kommuniziert.

Zusammenfassend erscheint es unbedingt erforderlich, zunächst intensive Grundlagenforschung zur THS bei Schizophrenie für eine Konzeptentwicklung durchzuführen, um sich dann in einem zweiten Schritt mit gut kontrollierten und hypothesengeleiteten klinischen Proof-of-Concept-Studien ersten klinischen Anwendungen zu nähern.

2.2.1 Depression

Der Einsatz der THS in der Behandlung der Depression geht auf neue Konzepte der neurobiologischen Grundlagenforschung zu dieser Krankheit zurück (Berton and Nestler, 2006). Über den Einsatz der THS bei Depression wurde von Helen Mayberg erstmals 2005 berichtet (Mayberg et al., 2005). Verschiedene Gehirnareale wurden als Zielgebiete getestet und bezüglich der klinischen Wirksamkeit verglichen:

(1) Der subgenuale cinguläre Cortex (Brodmann-Areal Cg25) wurde aufgrund seiner besonderen Rolle bei der Modulation des Depressionsnetzwerks – speziell negativer Stimmungszustände – als Erstes erforscht (Mayberg et al., 2005; Lozano et al., 2008). In einer ersten Studie 2005 zeigten vier von sechs Patienten eine anhaltende Verbesserung vom zweiten bis zum sechsten Monat nach THS (Mayberg et al., 2005). Nach sechs Monaten (Lozano et al., 2008) erreichten 35 Prozent der Patienten sogar den Zustand einer Remission. Dieser Effekt war auch nach einem Jahr noch stabil. Die Responder-Raten dieser Studie (Kennedy et al., 2011) lagen nach einem Jahr bei 62,5 Prozent, nach zwei Jahren bei 46,2 Prozent und nach drei Jahren bei 75 Prozent. Bei der letzten Kontrolle nach einem Zeitraum von bis zu sechs Jahren lag die durchschnittliche Responder-Rate bei 64,3 Prozent, es wurden keine signifikanten Nebenwirkungen als direkte Folge der Stimulation gefunden. Diese Ergebnisse sind deshalb beachtlich, weil sie an sorgfältig ausgewählten Patientinnen und Patienten mit schweren Depressionen erzielt wurden, die nach allen gängigen psychiatrischen Kriterien seit Jahren als therapierefraktär eingestuft waren. Allerdings war zu Beginn der Behandlung die Suizidrate erhöht, die Ursachen sind aktuell unbekannt (Kennedy et al., 2011). Eine Plazebo-kontrollierte Studie, die die Richtung für weitere Anwendungen der THS bei Depression vorgeben sollte, wurde kürzlich wegen einer negativen Zwischenanalyse abgebrochen, in der gezeigt wurde, dass das erwünschte
Ziel nicht erreicht werden konnte (Horgan, 2014).

(2) Neben der Stimulation im subgenualen cingulären Cortex (siehe Abbildung 2) wurde auch die Stimulation des vorderen Teils der Capsula interna (ALIC) getestet (Greenberg et al., 2006). Nach einer einmonatigen Stimulation zeigte sich ein substanzieller Rückgang der Krankheitssymptome bei der Mehrheit der Patienten. Nach sechs Monaten zeigten sechs von 15 depressiven Patienten eine positive Wirkung, bei dreien fand man sogar eine Remission (Malone et al., 2009). Diese positiven Wirkungen waren nach einem Jahr noch nachweisbar, die Zahl der Patienten mit positiver Wirkung und Remission war sogar höher. Dieser positive Trend setzte sich bei längerer Behandlung fort, wobei die Zahl der Fälle, die in Studien über längere Zeiträume verfolgt wurden, mit jeweils circa 20 Patienten zu niedrig ist, um weitreichende Schlüsse über die Eignung der Methode bei der Behandlung der Depression zu ziehen.

(3) Der Nucleus accumbens (NAcc) spielt eine wichtige Rolle im Belohnungssystem (Schlaepfer and Lieb, 2005). Eine Stimulation dieses Areals wurde mit Verbesserung der Anhedonie und Stimmungsaufhellung bei depressiven Patienten in Verbindung gebracht (Schlaepfer and Lieb, 2005). Die Ergebnisse bei elf in diese Studie eingeschlossenen Patienten zeigen sowohl eine akute als auch eine stabile langfristige antidepressive Wirkung der THS über einen Zeitraum bis zu vier Jahren (Bewernick et al., 2010).

(4) Auch die Habenula (Sartorius and Henn, 2007) werden als mögliches Stimulationsziel erwogen. Die Autoren dieser Studie stellten aufgrund von Tierstudien und Ergebnissen aus der funktionellen Bildgebung die Hypothese vor, dass eine Überaktivierung der Habenula in ursächlichem Zusammenhang mit Depression stehen könnte. In einer Einzelfallstudie (Sartorius et al., 2010) zeigte ein Patient nach THS-Stimulation der Habenula und Anpassung der Stimulationsparameter einen positiven Effekt, der allerdings in weiterführenden Studien überprüft und validiert werden muss.

(5) Das mediale Vorderhirnbündel (mVB) wird von Coenen und Schläpfer (Coenen et al., 2011b) als weiteres Zielgebiet für die THS-Behandlung der Depression vorgeschlagen, aufgrund der neuroanatomischen und funktionellen Verbindungen dieser Region mit den bereits oben genannten und erforschten THS-Zielen. Bildgebende Verfahren wie Fiber-Tracking und Simulation des elektrischen Feldes bei bisher getesteten Stimulations-
zielen weisen das mediale Vorderhirnbündel als weiteres Stimulationsziel bei dieser Erkrankung aus. Kürzlich wurde eine erste Studie zur THS des medialen Vorderhirnbündels an sieben Patienten veröffentlicht: Sechs Patienten respondierten klinisch innerhalb von zwei bis fünf Tagen (Schlaepfer et al., 2013). Allerdings fehlen auch hier noch kontrollierte Studien über längere Beobachtungszeiträume an größeren Patientenkohorten, um aus diesen Ergebnissen Schlüsse zur Wirksamkeit und zu Nebenwirkungen ziehen zu können.

Weder die Stimulation des Cg25 (McNeely et al., 2008) noch des NAcc (Grubert et al., 2011) führte zu neuropsychologischen Beeinträchtigungen im Rahmen der durchgeführten Tests, es zeigten sich teilweise sogar Verbesserungen von vorher eingeschränkten kognitiven Funktionen (Grubert et al., 2011).

Mithilfe bildgebender Verfahren (PET) konnte eine Normalisierung des Stoffwechsels in der stimulierten Region und in funktionell verbundenen Regionen des Depressionsnetzwerks gezeigt werden (Mayberg et al., 2005; Schlaepfer et al., 2008; Bewernick et al., 2010).

Aufgrund der wenigen, oft unkontrollierten Studien mit jeweils sehr kleinen Stichproben kann die effektivste Zielregion bei Patientinnen und Patienten mit Depression derzeit noch nicht festgelegt werden. Die Tatsache, dass erste antidepressive Effekte nach THS an verschiedenen Zielpunkten gezeigt werden konnten, spricht dafür, die THS als Therapieoption für die behandlungsresistente Depression weiterzuverfolgen. Auch bei dieser Erkrankung ist es notwendig, die klinischen Studien mit der Grundlagenforschung zu verbinden, um zum einen die Wirkmechanismen der Stimulation aufzuklären und zum anderen besser zu verstehen, wie veränderte neuronale Netzwerkfunction zum Krankheitsbild der Depression beiträgt. Die verschiedenen Stimulationsorte, die im Rahmen bisheriger Studien bei relativ kleinen Patientengruppen getestet wurden, sind auch ein Hinweis darauf, dass noch Wissensbedarf besteht über die veränderte Funktion von Netzwerken und anatomischen Schaltstrukturen, die bei der Depression betroffen sind. Der Einsatz neuer bildgebender Verfahren eröffnet hier die Möglichkeit, wichtige neue Erkenntnisse hinsichtlich veränderter Netzwerkfunctionen bei der Depression zu gewinnen und gleichzeitig die THS als potenziell geeignete Therapiemethode für diese Krankheit weiter zu entwickeln.
2.2.2 Zwangserkrankungen


Die Stimulation der ventralen Capsula interna führte zu einer Verbesserung bei fünf von zehn Patientinnen und Patienten, die in einer ersten Studie untersucht wurden (Greenberg et al., 2006). Nebenwirkungen der Stimulation waren eine vorübergehende Hypomanie und verstärkte Angst (Greenberg et al., 2006). Die Ergebnisse wurden in einer zweiten Studie mit 26 Patienten bestätigt (Greenberg et al., 2008).


Auch eine komorbide Depression erscheint zumindest in einer ersten präliminären Studie nach TSH des Nucleus accumbens und des Nucleus caudatus beeinflussbar (Aouizerate et al., 2004). Die unilaterale Stimulation des Nucleus accumbens zeigte bei 14 implantierten Patientinnen und Patienten gute Resultate (Bewernick et al., 2010). Eine 2010 veröffentlichte Studie mit 16 Patienten berichtet von einem Symptomrückgang bei knapp der Hälfte der Patienten nach acht Monaten, auch nach einem 21-monatigen Follow-up (Denys et al., 2010). Die Fallzahlen der bisher mit TSH behandelten Patienten sind zwar gering, die Stimulation verschiedener Gehirnareale bei Zwangserkrankungen zeigt aber ermutigende Resultate. Allerdings ist
es zurzeit noch nicht möglich, Aussagen über einen optimalen Zielpunkt für die THS bei dieser Patientengruppe zu machen.

2.2.3 Substanzabhängigkeit und Suchterkrankungen

Die neurobiologischen Grundlagen von Abhängigkeit und Sucht sind in den letzten Jahren zunehmend besser verstanden (Koob and Volkow, 2010) und lenken die Hoffnung auf zukünftige biologische Therapien, da die bisherigen verhaltenstherapeutischen Ansätze oft unbefriedigend bleiben. In diesem Zusammenhang sind zufällige Einzelfallbeobachtungen interessant, die auf eine Änderung des Suchtverhaltens unter THS aus anderer Indikation hinweisen. Die Stimulation des Nucleus accumbens führte bei zwei Patienten zur verbesserten Kontrolle der Nikotinabhängigkeit (Kuhn et al., 2009b; Mantione et al., 2010; Fontaine et al., 2004) und des Alkoholismus (Kuhn et al., 2009d; Muller et al., 2009). Eine weitere Studie untersucht zurzeit die Wirkung der THS des Nucleus accumbens bei Patientinnen und Patienten mit therapieresistentem Alkoholismus (http://gepris.dfg.de/gepris/projekt/174204487, DRKS00006785). Die zugrunde liegenden Wirkmechanismen der THS sind jedoch unbekannt, sodass auch für diese Indikation eine vernetzte Grundlagenforschung in Modellsystemen und weiterführende Forschung mit bildgebenden Verfahren notwendig ist, um die Voraussetzungen für weiterführende klinische Studien bei Patienten mit Suchterkrankungen zu schaffen.

2.2.4 Schizophrenie

Auch bei Schizophrenie ist die Anwendung der THS in einem so frühen Stadium, dass es derzeit noch nicht möglich ist, Aussagen zur Wirksamkeit der Behandlungsmethode zu machen. Die neurobiologischen Grundlagen der Schizophrenie sind noch nicht vollständig verstanden. Tierexperimentelle Daten an Ketamin-behandelten Ratten, einem Tiermodell für die Schizophrenie, weisen darauf hin, dass die THS im Nucleus accumbens Psychose-äquivalentes Verhalten bei den Tieren signifikant reduzieren kann (Ma and Leung, 2014). Ebenso konnte in einem anderen Ratten-Tiermodell eine Normalisierung in der Verarbeitung auditiver Reize durch die THS im ventralen Hippocampus erreicht werden (Ewing and Grace, 2013). Bei zwei unterschiedlichen Tiermodellen für die Schizophrenie wurden verschiedene Zielpunkte der THS getestet (Klein et al., 2013): Hierbei stellten sich der mediale prafrontale Kortex und der dorsomediale Thalamus als die Zielareale mit höchster Effektivität auf potenziell Schizophrenie-äquivalentes Verhalten dar. Es ist nicht bekannt, inwieweit die Ergebnisse dieser tierexperimentellen Studien Rückschlüsse auf die Wirksamkeit der THS bei Patienten-

Insgesamt besteht noch erheblicher Forschungsbedarf zu den pathophysiologischen Mechanismen der Schizophrenie als Grundlage einer zukünftigen THS, um mögliche Zielpunkte und Mechanismen der THS und deren kurz- und langfristige Effekte zu identifizieren. Aber auch hier können die ersten Studien Hinweise auf die Bedeutung veränderter neuronaler Netzwerkaktivität für die komplexe Symptomatik beim Krankheitsbild Schizophrenie geben. Auch für dieses Krankheitsbild ist ein Verbund aus klinischer Forschung, kliniknaher Forschung zur Pathophysiologie und Grundlagenforschung notwendig, bevor gegebenenfalls ein patientenorientierter Transfer in die klinische Anwendung erfolgen könnte.

2.3 THS bei weiteren neuropsychiatrischen Erkrankungen

2.3.1 Tourette-Syndrom


Somit bleibt in der Zusammenfassung an der Effektivität der Stimulation trotz der bislang eher schwachen Datenlage wenig Zweifel. Der Mechanismus der THS bei diesem Krankheitsbild,
der Vergleich unterschiedlicher Zielpunkte in Bezug auf Wirkung und Nebenwirkungen und der aus klinischer und ethischer Perspektive höchst wichtige systematische Langzeitverlauf der Erkrankung unter der Stimulation bedarf in den nächsten Jahren noch umfangreicher klinischer und grundlagenwissenschaftlicher Arbeiten.

2.3.2 Demenz


Der mögliche Wirkmechanismus dieses Verfahrens ist unklar, wenngleich die Autoren auf der Basis ihrer Ergebnisse die Hypothese aufstellen konnten, dass die Aktivierung der fornikalen Axone zu einer nachgeschalteten Aktivierung kortikaler Gehirnregionen führen kann, die an Gedächtnisprozessen beteiligt sind (Laxton et al., 2010).

2014 wurde eine Studie zur Stimulation des Nucleus basalis Meinert bei der Alzheimer-Demenz veröffentlicht (Kuhn et al., 2014). Diese Studie konnte an vier von sechs Patienten mit Morbus Alzheimer in einer verblindeten, randomisierten Doppel-Blind-Phase eine Effektivität der niederfrequenten Stimulation im Vergleich zur Sham-Stimulation zeigen. In der Nachbeob-
achtung über 12 Monate blieben die Responder-Patienten unter Stimulation in ihren kognitiven Leistungen weitgehend stabil, was in Anbetracht der normalerweise zu erwartenden klinischen Verschlechterung als Hinweis auf einen positiven Effekt gewertet werden kann. Insgesamt liegen hiermit erste Daten zur THS bei Morbus Alzheimer vor, die weitere Projekte zur Identifikation pathophysiologischer Mechanismen und Wirkweise der THS notwendig machen. Auch hier ist eine Forschung im Verbund von Grundlagen- und kliniknaher Forschung sowie weiteren multizentrischen, langfristig angelegten klinischen Studien erforderlich, um Wirkmechanismen aufzuklären, um die pathophysiologischen Grundlagen veränderter Netzwerkfunktionen besser verstehen zu können – insbesondere für das Gedächtnis und andere Hirnfunktionen, die bei Morbus Alzheimer beeinträchtigt sind –, um geeignete Zielgebiete zu definieren, Chancen und Risiken zu definieren und langfristig die Behandlungsmöglichkeiten besser nutzen zu können, die die THS bei dieser Erkrankung bietet.

2.3.3 Adipositas


Auch hier ist die Antwort auf die Frage, wie die THS mit pathophysiologischen Mechanismen der Adipositas interferiert, in einem Hypothesenstadium. Die ersten Befunde, die aus klinischen Beobachtungen resultieren, müssen durch weitergehende Untersuchungen zum Verständnis dieser Phänomene in der Grundlagenforschung gestützt werden. Klinische Studien in diesem Bereich sollten langfristig angelegt sein, mit starkem Fokus auf Parameter, mit denen erstens die Lebensqualität in einem weiten Verständnis (siehe Kapitel 2.9.2) und zweitens unerwünschte Nebenwirkungen erfasst werden können.

Fazit:

Bei vielen neuen Indikationen für die THS wird deutlich, dass die bisherigen Ergebnisse sowohl durch weiterführende Grundlagenuntersuchungen zur Aufklärung von Wirkmechanismen als auch durch weiterführende kontrollierte klinische Studien geprüft werden müssen. Die klinischen Studien sollten zudem durch bildgebende Verfahren sowie durch weitere Verfahren zur Erfassung elektrophysiologischer und funktioneller neuronaler Netzwerkaktivität und deren Beeinflussung durch die THS ergänzt sowie des Weiteren durch geeignete qualitative und quantitative Instrumente zur Erfassung von Nebenwirkungen und Auswirkungen der Behandlung auf die Lebensqualität in einem weiten Verständnis komplettiert werden.
3 Risiken der THS


3.1 Chirurgische Nebenwirkungen


3.1.1 Frühkomplikationen

Hirnblutungen (ICB) nach stereotaktischer Implantation von Elektroden zur THS treten bei etwa 3 Prozent der Patientinnen und Patienten auf. Diese Zahl enthält sowohl Blutungseigennisse ohne neurologische Symptome (asymptomatische Blutungen), die nur durch postoperative CT- oder MRT-Kontrollen registriert wurden, als auch symptomatische Blutungen. Bei durchschnittlich einem Drittel der Patienten waren die neurologischen Störungen nach abgelaufener Hirnblutung nicht mehr rückbildungsfähig. Die Wahrscheinlichkeit, an den Folgen einer Operation zur Implantation eines THS-Systems zu versterben, beträgt 0,4 Prozent (Voges et al., 2007).

Postoperative epileptische Anfälle (Häufigkeit: 1,3 Prozent) oder eine Schädigung von Hirngewebe mit nachfolgendem Funktionsausfall durch die Hirnlektroden selbst (Häufigkeit: 0–0,2 Prozent) sind seltene Frühkomplikationen.
3.1.2 Spätkomplikationen und chronische Nebenwirkungen

Hautdefekte (Ulzerationen), die sich über implantiertem Fremdmaterial ausbilden können, treten bei 0,9–5,5% der Patientinnen und Patienten auf. Die Angaben zur Migration oder zu einer operativen Repositionierung einer Hirnlektrode aus anderen Gründen liegen zwischen 0 und 18,8 Prozent (Durchschnitt: 5,8 Prozent). Bei kindlichen Dystonien ist von wesentlich höheren Komplikationsraten durch Infektion, Hautmazeration und langfristig durch das Problem des Größenwachstums des Schädels auszugehen, ohne dass hier kontrollierte prospektive Daten vorliegen (Woopen et al., 2013). Die Wahrscheinlichkeit für Verletzung oder Bruch einer Hirnlektrode beträgt 0,8–15,2 Prozent pro Patient (Durchschnitt: 3,6 Prozent). Viele technische Komplikationen wurden bereits vor etwa fünf bis 15 Jahren beschrieben, die veröffentlichten Zahlen bilden daher teilweise auch eine Lernkurve im Umgang mit einer damals relativ neuen operativen Methode ab.


3.1.3 Infektionen

3.2 Stimulationsinduzierte Effekte auf die Kognition

Das neuropsychologische Nebenwirkungsprofil der THS kann nicht in einer allgemein gehaltenen Form beschrieben werden, sondern nur mit Bezug zu bestimmten stimulierten Zielregion und/oder einer bestimmten, in dieser Zielregion behandelten Erkrankung. Subkortikale Zielareale wie STN oder GPI, die zusätzlich zu Verbindungen mit dem motorischen Kortex auch limbische oder assoziative kortikale Projektionen beziehungsweise Afferenzen besitzen, haben nach derzeitigem Stand des Wissens zum Beispiel ein höheres Risiko für nicht motorische Nebenwirkungen durch THS als die motorischen Thalamuskerne. Andererseits werden zur Behandlung neuropsychiatrischer Erkrankungen bewusst Zielpunkte gewählt, die wie ATN, NAc oder subgenualer Kortex (CG25) (siehe Kapitel 2.6) per se ein wesentlicher Bestandteil neuronaler Netzwerke des limbischen Systems sind, sodass die THS bei diesen Indikationen die Wahrscheinlichkeit für psychiatrische Nebenwirkungen erhöht.

Ein zusätzlicher Aspekt ist die Relation zwischen der Größe der Stimulationselektrode (äußerer Durchmesser: 1,28 Millimeter) beziehungsweise des durch den applizierten Strom effektiv angeregten Gewebevolumens einerseits und des Gesamtvolumens der Zielregion andererseits, in der die Elektrode implantiert wird. Da zum Beispiel innerhalb des STN (Abmessungen: 3 x 6 x 9 Millimeter) die assoziativen und limbischen Untereinheiten näher an der motorischen Region liegen als im deutlich größeren GPI (Volumen: etwa 200 ml) oder im ventralen Thalamus, werden bei STN-THS vorhersehbar sehr viel häufiger nicht motorische Störungen auftreten als in den beiden anderen, zur Behandlung von Bewegungsstörungen genutzten Zielregionen.


der motorischen Defizite, aber natürlich auch der Analyse stimulationsinduzierter neuropsychologischer und neuropsychiatrischer Defizite insbesondere beim Essentiellen Tremor und bei der Dystonie.

3.3 Effekte der STN-Stimulation bei Morbus Parkinson auf Kognition und Verhalten

Unerwünschte Effekte der THS auf Kognition, Stimmungsstabilität (Euphorie, Hypomanie oder Manie, Depression, Angststörung) oder Verhalten sind im Vergleich zu anderen Erkrankungen beziehungsweise Zielpunkten bislang nur für Morbus Parkinson im Kontext einer elektrischen Stimulation im STN gut dokumentiert.


In dieser Übersicht zu neuropsychiatrischen Effekten der hochfrequenten elektrischen STN-Stimulation zur Behandlung des IPS wurde auch darauf hingewiesen, dass bei einer abschließenden Einschätzung nicht motorischer THS-Effekte unbedingt die im postoperativen Verlauf immer erforderliche Umstellung der Parkinsonmedikation zu berücksichtigen sei. In dieser Phase wird die präoperative Dosis um durchschnittlich 50 Prozent reduziert. Auf eine rasche Reduktion dopaminerg wirksamer Substanzen reagieren zum Beispiel manche Patienten mit Apathie, die wiederum häufig mit kognitiven Störungen assoziiert ist (Volkmann et al., 2010).
Postoperative Euphorie und/oder Hypomanie (bei 4–15 Prozent der Patienten) beziehungsweise die deutlich selteneren manischen Psychosen (Häufigkeit 0,9–1,7 Prozent) wurden typischerweise zeitgleich mit der Erstaktivierung des IPG beobachtet, sodass hier ein direkter Zusammenhang zwischen elektrischer Stimulation des motorischen STN-Anteils und einer Miterregung des limbischen Systems mit seinen Verbindungen sehr wahrscheinlich ist. Im weiteren Verlauf war dann interessanterweise bei den meisten Patientinnen und Patienten eine Stimulation mit dem gleichen Elektrodenkontakt ohne Nebenwirkungen möglich. Wie bereits für kognitive Hirnleistungen dargestellt, ist auch bei diesem Symptomkomplex die Interaktion zwischen Parkinsonmedikation und Stimulation während der postoperativen Einstellungsphase zu berücksichtigen (Übersicht in Volkmann et al., 2010).


Bei der Beurteilung der Depression im Langzeitverlauf sollte sorgfältig zwischen dem erkrankungsspezifischen Risiko (Prävalenz einer klinisch relevanten Depression bei Morbus Parkinson: 30–40 Prozent (Reijnders et al., 2008) und dem Risiko differenziert werden, das sich aus der STN-Stimulation selbst ergibt. Bezogen auf einen dreijährigen Beobachtungszeitraum wurden stimulierte Patienten im Vergleich zu medikamentös behandelten Patienten oder im Hinblick auf ihren präoperativen Status nicht häufiger psychiatrisch auffällig (Reijnders et al., 2008; Kaiser et al., 2008). In einer anderen Langzeituntersuchung zur STN-THS bei Morbus Parkinson traten Depressionen erst gehäuft am Ende eines Fünfjahres-Beobachtungsintervalls auf.
valls auf, sodass hier weniger ein Stimulationseffekt beobachtet wurde, sondern sehr wahrscheinlich ein Symptom der weiter fortschreitenden Erkrankung (Merola et al., 2011).

Apathie wird analog zu Depression entweder unmittelbar postoperativ oder im Langzeitverlauf beobachtet. Im erstgenannten Fall wird neben einer Reaktion der Patientinnen und Patienten auf die Reduktion dopaminerge Substanzen auch eine unbeabsichtigte Stimulation frontaler motivationaler Netzwerke diskutiert, die mit den limbischen und assoziativen Arealen des STN verbunden sind. Apathie als häufigster unbeabsichtigter Effekt nach Langzeitanwendung der STN-Stimulation wurde bei 8,7 Prozent präoperativ und bei 24,6 Prozent der Patienten im dritten postoperativen Jahr beobachtet (Funkiewiez et al., 2004); zumindest teilweise ist sie auch Ausdruck eines durch Neurodegeneration zunehmend veränderten Gehirns (Volkmann et al., 2010). Die Zufriedenheit von Patientinnen und Patienten mit Morbus Parkinson mit dem Ergebnis der STN-THS scheint jedoch maßgeblich von dem präoperativen Ausmaß der Apathie beeinflusst zu sein (Maier et al., 2013).

Verhaltensauffälligkeiten wie Punding (exzessive, wiederholt ablaufende, nicht zielgerichtete Verhaltensmuster) oder Impulskontrollstörungen (Kontrollverlust führt zu zwanghaftem „Lustverhalten“, das sich zum Beispiel in Form von pathologischem Spielen, Hypersexualität, Essattacken oder zwanghaftem Einkaufen manifestiert) werden bei Parkinsonpatienten auch häufig unabhängig von einer THS-Therapie registriert. Insbesondere Impulskontrollstörungen sind mit der Einnahme von Dopaminagonisten assoziiert. Trotz einer geringen Evidenz, die auf Einzelfallberichten basiert, ist es daher sehr wahrscheinlich, dass Impulskontrollstörungen, die gelegentlich nach Beginn der STN-Stimulation, d. h. während der postoperativen Umstellungs- und Adaptationsphase, beobachtet wurden, ein vorübergehendes Phänomen darstellten. Möglicherweise ist die perioperative Reduktion von dopaminerge Medikation sogar insgesamt eher mit einer Reduktion von Verhaltensstörungen wie den Impulskontrollstörungen assoziiert (Ardouin et al., 2006; Castrioto et al., 2014; Volkmann et al., 2010).

Eine Reihe von Studien konnte bei Patientinnen und Patienten mit Morbus Parkinson eine Veränderung der Impulsivität nachweisen (Frank et al., 2007). Die klinische Relevanz dieser subtilen Veränderungen ist bislang nur unzureichend untersucht, ein mehr oder weniger subtil verändertes Sozialverhalten scheint jedoch vorzuliegen (Florin et al., 2013). Es kann in Kombination mit Stimmungsveränderungen der Patientinnen und Patienten vom sozialen Umfeld als Persönlichkeits- oder Identitätsveränderung wahrgenommen werden (Schuepbach et al., 2006).
3.4 THS in anderen Zielregionen oder bei anderen Erkrankungen als Morbus Parkinson

Drei Studien, die detailliert über das neuropsychologische Ergebnis von Parkinsonpatientinnen und -patienten berichteten, bei denen Tremor durch Stimulation im motorischen Thalamus behandelt wurde, fanden keine Hinweise für signifikante oder weiterreichende kognitive Veränderungen. Eine bilaterale Stimulation im GPI bei Parkinsonpatienten ist ebenfalls vergleichsweise nebenwirkungsarm (drei Studien mit insgesamt 19 Patienten). Lediglich bei Einzelfällen wurden nicht motorische Effekte wie exekutive Dysfunktion oder Probleme in einem Test berichtet, der die Arbeitsgedächtniskapazität untersucht (Witt et al., 2008). In einer prospektiv randomisierten kontrollierten Studie mit medikamentös behandelter Kontrollgruppe und zusätzlicher Randomisierung innerhalb der chirurgischen Gruppe bei GPI- beziehungsweise STN-stimulierten Patienten waren nach drei Jahren in der GPI-THS-behandelten Gruppe demenzielle Störungen geringer ausgeprägt als in der STN-THS-behandelten Gruppe (Weaver et al., 2012). GPI-THS bei Patienten mit primärer oder idiopathischer Dystonie hatte keinen negativen Effekt auf kognitive Hirnleistungen und induzierte auch keine anderen psychiatrischen Nebenwirkungen (Kupsch et al., 2006; Vidailhet et al., 2005).


3.5 Auswirkungen der THS auf Identität und soziale Bezüge

In Abhängigkeit vom stimulierten Zielgebiet und der betreffenden Erkrankung kann es nicht nur kurz-, sondern auch langfristig zu Verhaltens- und Stimmungsänderungen kommen, die entweder der Betreffende oder ein Angehöriger oder beide als eine Änderung der Persönlichkeit beziehungsweise der Identität des Patienten wahrnehmen (Lewis et al., 2014). Dies kann sowohl positiv als auch negativ erlebt werden. Solche Identitätsänderungen müssen sich nicht immer in Persönlichkeitstests nachweisen lassen. Gleichwohl können auch nicht pathologische


Fazit:

4 Ethische und rechtliche Gesichtspunkte


4.1 Ethische und rechtliche Aspekte bei etablierten Indikationen

4.1.1 Einwilligung nach Aufklärung und Beratung

Der informed consent – also die auf der Grundlage einer umfassenden Aufklärung vorab und freiwillig erteilte Einwilligung des Patienten – erlangt im Falle der THS in verschiedenen Bereichen Bedeutung.

Der einwilligungsfähige Patient wird sachgemäß und umfassend über die Art des Eingriffs, seine Ziele, Risiken und mögliche Nebenwirkungen sowie andere evaluierte Behandlungsmöglichkeiten aufgeklärt. Dabei sind auch, soweit bekannt, Langzeitwirkungen zu berücksichtigen, die sich auf den psychosozialen Bereich beziehen oder die Persönlichkeit beziehungsweise Identität der Patientin oder des Patienten betreffen. Auf der Grundlage seiner persönlichen Bewertung dieser Informationen entscheidet der Patient freiwillig, ob er dem Eingriff zustimmt oder ihn ablehnt (Schmitz-Luhn et al., 2012). Da die THS meist als letzte Option eingesetzt wird, wenn medikamentöse Therapien nicht mehr ausreichend wirken, gilt es besonders, die oft verzweifelte Situation der Patientinnen und Patienten zu beachten und unrealistischen Erwartungen entgegenzuwirken (Clausen, 2010). Um ein optimales Behandlungsergebnis zu
ermöglichen, sollten auch bei einwilligungsfähigen Patienten die (zuweilen mit der Pflege betreuten) Angehörigen in den Aufklärungs- und Entscheidungsfindungsprozess einbezogen werden, damit sie sich auf ihre möglicherweise neue Rolle nach der Operation vorbereiten können. Die Einbeziehung der Angehörigen ist allerdings an die Zustimmung des Patienten gebunden.

In Zukunft ist für manche Erkrankungen wie die Parkinsonerkrankung davon auszugehen, dass die THS nicht erst als ultima ratio, sondern bereits zu einem früheren Zeitpunkt im Krankheitsverlauf in Betracht gezogen wird (Schuepbach et al., 2013), wenn noch nicht alle anderen therapeutischen Möglichkeiten ausgeschöpft sind. In diesen Fällen sind die möglichen Vor- und Nachteile eines frühen gegenüber einem späteren Einsatz mit dem Patienten und seinen Angehörigen unter Berücksichtigung der individuellen Situation eingehend zu erörtern (Woopen et al., 2013).

Bei Patientinnen und Patienten, die aus Altersgründen (Minderjährige) oder aus Krankheitsgründen nicht selbst einwilligen können, entscheidet der gesetzliche Vertreter im Rahmen des Sorge- beziehungsweise Betreuungsrechts. Voraussetzung ist, dass dieser in vollem Umfang über den Eingriff informiert ist (siehe oben). Die Entscheidung des gesetzlichen Vertreters orientiert sich am Wohl des Vertretenen.

Eine erteilte Einwilligung beziehungsweise Zustimmung durch den gesetzlichen Vertreter ist jederzeit widerrufbar, ohne dass dem Patienten dadurch Nachteile entstehen dürfen.

4.1.2 Ethische Aspekte bei nicht intendierten Effekten der THS


4.2 Enhancement

Wenn die therapeutische THS zusätzlich oder ausschließlich nicht intendierte, positiv empfundene Effekte hervorruft – beispielsweise eine gehobene Stimmung – ist zu fragen, wie weit die Patientenautonomie in der Bestimmung der optimalen Stimulationsparameter reicht (Synofzik et al., 2012). Das Ausbleiben klinisch-therapeutischer Effekte rechtfertigt bei gleichzeitig gesteigertem Wohlbefinden und vermindriger subjektiv empfundener Krankheitslast für sich allein noch nicht, den Eingriff rückgängig zu machen, wie dies in einem Fall aus den Niederlanden geschehen ist (Schermer, 2013).

4.3 Patientenauswahl bei anerkannten Indikationen


Aus ethischer Perspektive bedarf es einer besonderen Begründung, Patientinnen und Patienten einen möglichen therapeutischen Nutzen vorzuenthalten. Der Ausschluss beispielsweise von Parkinsonpatienten mit demenziellen Symptomen wird mit einer ungünstigen Prognose dieser Patienten begründet, da häufiger postoperative Beeinträchtigungen erwartet werden (Hilker et al., 2009; Krack, 2000). Da die empirischen Belege allerdings noch sehr uneinheitlich sind (Lang et al., 2006), sollte aus ethischer Perspektive eine zusätzliche Demenz allein kein Ausschlusskriterium sein (Farris et al., 2008). Bedeutsam ist eine gründliche Langzeiterhebung, um in Zukunft eine solide Datenbasis für eine verfeinerte Indikationsstellung zu erhalten (Clausen, 2011b). Dies ist nicht zuletzt für die Aufklärung der Patientinnen und Patienten sowie ihrer Angehörigen vor der Operation hilfreich.

4.4 Ethische und rechtliche Aspekte bei Ausweitung der Indikationsstellung

Die bisherigen Erfolge der THS bei der Behandlung von Patientinnen und Patienten mit Morbus Parkinson (siehe Kapitel 3.1.1) oder Zwangsstörungen (siehe Kapitel 3.2.2) sowie die

Grundsätzlich gelten für die informierte Einwilligung zur Teilnahme an Forschungsvorhaben die gleichen Anforderungen wie bei evaluierten Indikationen (siehe Kapitel 3.1.1). Insbesondere ist darauf hinzuweisen, dass – wie bei allen Forschungsprojekten – Aussagen über erhofften Nutzen und mögliche Risiken nur bedingt möglich sind. Insofern ist ein erhöhter Informationsaufwand erforderlich. Bei der Aufklärung ist deutlich darauf hinzuweisen, dass die Teilnahme an einem Forschungsprojekt erbeten wird, aber freiwillig ist und jederzeit widerrufen werden kann. Bei nicht einwilligungsfähigen Patientinnen und Patienten darf die klinische Prüfung nur durchgeführt werden, wenn die Anwendung des zu prüfenden Medizinprodukts nach den Erkenntnissen der medizinischen Wissenschaft angezeigt ist, um das Leben des Betroffenen zu retten, seine Gesundheit wiederherzustellen oder sein Leiden zu erleichtern (§ 21 Nr. 1 MPG). Auch bei Forschungsvorhaben unter Beteiligung Minderjähriger wird ein Individualnutzen gesetzlich gefordert (§ 20 Abs. 4 Nr. 2 MPG).


Eine Ausweitung der Indikation für die THS muss vor diesem Hintergrund strengen Prüfkriterien standhalten. In forschungsethischer Hinsicht gelten die etablierten sieben ethischen
Grundsätze zur Forschung am Menschen (Emanuel et al., 2000; Liesching et al., 2012). Diese Kriterien sind recht allgemein gehalten; sie müssen für jedes einzelne Forschungsvorhaben individuell jeweils neu konkretisiert werden (Clausen, 2010; Woopen, 2012b).

Für die Auswahl des Stimulationsziels sollten fundierte anatomische und neurobiologisch-funktionelle Hypothesen generiert worden sein. Gleichermassen dürfen die Forschungsvorhaben nur von qualifizierten Ärzten an geeigneten Prüfzentren durchgeführt werden, und die Studie sollte von einem unabhängigen Data Management Safety Board (DMSB) begleitet werden (Kuhn et al., 2009c). In einem festgelegten Protokoll müssen psychische, somatische und neuropsychologische Effekte evaluiert werden. Um die Bekanntmachung von negativen Ergebnissen zu garantieren, sollte eine Studienregistrierung obligat sein (Synofzik et al., 2012).

4.5 Anforderungen des Medizinproduktegesetzes

Die THS fällt unter das Regime des Medizinproduktechts, hier namentlich des Medizinproduktegesetzes (MPG). Gemäß § 20 Abs. 1 Satz 1 MPG darf mit der klinischen Prüfung eines Medizinprodukts in Deutschland erst begonnen werden, wenn die zuständige Ethikkommission diese nach Maßgabe des § 22 MPG zustimmend bewertet und die zuständige Bundesoberbehörde diese nach Maßgabe des § 22a MPG genehmigt hat (siehe auch Kapitel 3.8.1). Die umfangreichen formellen und materiellen Genehmigungsvoraussetzungen ergeben sich im Detail aus den §§ 20 und 22a MPG sowie aus der gesetzeskonkretisierenden Verordnung über klinische Prüfungen von Medizinprodukten (MPKPV).

Bei klinischen Prüfungen von Medizinprodukten mit geringem Sicherheitsrisiko kann die zuständige Bundesoberbehörde gemäß § 20 Abs. 1 Satz 2 MPG von einer Genehmigung absehen. Die Details dieses Verfahrens werden in § 7 MPKPV geregelt.

Das Genehmigungsregime der §§ 20 bis 23a MPG findet schließlich nach § 23b MPG keine Anwendung, wenn eine klinische Prüfung mit Medizinprodukten durchgeführt wird, die nach den §§ 6 und 10 MPG die CE-Kennzeichnung tragen dürfen, es sei denn, diese Prüfung hat eine andere Zweckbestimmung des Medizinprodukts zum Inhalt oder es werden zusätzlich invasive oder andere belastende Untersuchungen durchgeführt. Maßgebliche Bedeutung kommt damit der Klärung der Frage zu, ob etwa der Einsatz einer CE-zertifizierten Elektrode in einem neuen Hirnareal die Zweckbestimmung des Medizinprodukts tangiert oder aber
unberührt lässt. Eine belastbare Klärung dieser Frage ist bislang nicht geleistet worden. Für betroffene Forscher bietet es sich daher an, bei entsprechenden Vorhaben mit einem kurzen, substanzierten Hinweis an das Bundesinstitut für Arzneimittel und Medizinprodukte als zuständige Bundesoberbehörde heranzutreten, um zu klären, ob eine solche Abweichung von der Zweckbestimmung genehmigungspflichtig ist.

4.6 Nicht anwendbare Regelungen

Die im Zusammenhang mit der THS mitunter genannte Konvention über psychotrope Substanzen der Vereinten Nationen ist schon aufgrund des dort verwendeten Substanzbegriffs nicht anwendbar. Schließlich entfalten auch die zahlreichen Stellungnahmen, die von Fachgesellschaften und berufsständischen Organisationen zur THS vorgelegt worden sind, als solche zunächst keine direkte rechtliche Bindungswirkung.

4.7 Haftungsrechtliche Aspekte im Zusammenhang mit der THS

Der rechtliche Umgang mit unerwarteten Konsequenzen der THS weist zunächst eine klassische medizin- beziehungsweise haftungsrechtliche Facette auf, die sich jedoch angesichts der Vielgestaltigkeit möglicher Fallkonstellationen gegenüber einer generalisierenden Betrachtung sperrt. Falls es also infolge einer THS zu Effekten kommen sollte, die sich auf den Betroffenen und sein Wohlbefinden (oder auch auf Dritte) nachteilig auswirken, so ist stets auf Grundlage der konkreten Geschehnisse im jeweiligen Einzelfall zu untersuchen, ob die Maßnahme den relevanten medizinischen, ethischen und rechtlichen Standards genügt oder ob eine Verletzung dieser Standards vorliegt, die gegebenenfalls zu entsprechenden Einstands- pflichten führt. Näherer Ausführungen bedarf es in diesem Zusammenhang zu möglichen weiterreichenden Folgen etwaiger Veränderungen der Persönlichkeit, der kognitiven Fähigkeiten und/oder der Lebensqualität.

Soweit hier mitunter darauf hingewiesen wird, dass derartige Veränderungen möglicherweise ein gewisses Konfliktpotenzial mit Blick auf basale Verbürgungen der geltenden Verfassungsordnung aufweisen (namentlich hinsichtlich der Menschenwürde, der körperlichen Unversehrtheit sowie des allgemeinen Persönlichkeitsrechts), muss differenziert werden: Unmittelbare Grundrechtsverletzungen sind nur durch die staatlichen Gewalten möglich; durch den Staat erzwungene Anwendungen würden insoweit einer grundrechtlichen Überprüfung nicht stand-

4.8 Rahmenbedingungen zur Erfüllung der MPG-Vorschriften und Registrierung

Rechtslage

Nach §§19 bis 24 Medizinproduktegesetz (MPG) ist die Eignung von Medizinprodukten für den vorgesehenen Verwendungszweck durch eine klinische Bewertung anhand entsprechender klinischer Daten zu belegen.

Die klinische Bewertung ist Teil des Konformitätsbewertungsverfahrens, das für die Erteilung einer CE-Kennzeichnung für das Medizinprodukt gefordert wird. Dies ist Voraussetzung für die Inverkehrbringung des Produkts, hier der THS, für den vorgesehenen Verwendungszweck. Dies bedeutet im Umkehrschluss, dass die Eignung der THS für eine Indikation oder auch eine Wahl der Stimulationsparameter, die nicht durch das vorhandene CE-Label abgedeckt ist, durch eine klinische Studie nach MPG belegt werden müssen.

Allgemeinheit zur Verfügung und könnte somit auch von anderen verwendet werden). Praktisch bedeutet dies, dass bereits geringe Modifikationen eines THS-Systems, die in einer Gesundheitseinrichtung für wissenschaftliche Fragestellungen vorgenommen werden (z. B. die Entwicklung einer speziellen Auswertungssoftware mit einer Schnittstelle zum IPG), ein Konformitätsbewertungsverfahren durchlaufen müssen, damit die Forscherinnen und Forscher ihre Ergebnisse veröffentlichen können.

Verfahren der Genehmigung einer klinischen Prüfung


Die nach Landesrecht zuständigen Ethikkommissionen prüfen die Anträge unter den Gesichtspunkten der „wissenschaftlichen Qualität“, „rechtlichen Zulässigkeit“ und „ethischen Vertretbarkeit“. Die Prüfung der wissenschaftlichen Qualität des Projekts, die auch die Eignung des forschenden Arztes (Prüfers) und die Ausstattung der Prüfstelle einschließt, kann durch sachkundige, mit dem Projekt nicht befasste Mitglieder der Ethikkommission erfolgen. Falls diese Bedingungen nicht erfüllt werden können, ist externer Sachverstand zu beitragen. Die rechtliche Prüfung erstreckt sich auf spezialgesetzliche Bestimmungen (MPG-Recht) sowie

Fazit:

5 Klinische und grundlagenwissenschaftliche Forschung auf dem Gebiet der THS in Deutschland


Die patientenorientierte klinische Forschung umfasst neben dem bereits erwähnten Bereich der klinischen Studien zur Etablierung neuer Indikationen, Zielpunkte oder Parameter der THS auch die experimentelle krankheitsorientierte klinische Forschung, bei der die THS meist in Verbindung mit Verhaltensuntersuchungen, funktioneller Bildgebung oder klinisch neurophysiologischen Methoden genutzt wird, um die Pathophysiologie der behandelten Erkrankungen zu studieren oder auch die physiologischen Funktionen der modulierten Netzwerke aufzuklä-
ren. Durch diesen Ansatz hat die THS in den letzten Jahren als ursprünglich therapeutische Methode die systemischen Neurowissenschaften allgemein bereichert und ein neues Feld der experimentellen Physiologie der Basalganglienfunktion eröffnet.


5.1 Klinische Forschung und Industrie

Im Vergleich zu anderen implantierbaren Medizinprodukten wie zum Beispiel endovaskulären Stents (Spiralen zur Stabilisierung großer Blutgefäße), Wirbelkörperersatz, Systemen zur Ableitung von Hirnrasse usw. ist bei THS-Systemen die Zahl von Patientinnen und Patienten, bei denen diese Anwendung indiziert ist, deutlich geringer. Daher ist davon auszugehen, dass der Kreis der Anbieter für THS-Systeme während der nächsten Jahre nicht dramatisch wachsen wird, wenn auch neue Anbieter seit 2012 in den Markt eingetreten sind und damit neue innovative Produkte zur Verfügung stehen. Prinzipiell ist innerhalb eines kleinen Marktsegments für bereits am Markt engagierte Herstellerfirmen die Weiterentwicklung der THS-Systeme wenig attraktiv, da sich hohe Entwicklungskosten erst nach einem längeren Zeitintervall amortisieren
können, auch wenn die neue Konkurrenzsituation einen höheren Innovationsdruck erwarten lässt. Andererseits wird in Deutschland bereits seit Jahren an verschiedenen Hochschul- oder Forschungseinrichtungen anwendungsorientierte Forschung mit dem Ziel durchgeführt, neue Medizinprodukte zu entwickeln, die danach entweder mithilfe bereits bestehender medizintechnischer Unternehmen oder über ausgegründete Firmen für die Anwendung am Patienten in den Markt eingeführt werden. Somit wäre es auch generell möglich, an Hochschul- oder Forschungseinrichtungen über anwendungsorientierte Forschung die THS-Technologie zu optimieren. Dabei ist zu berücksichtigen, dass für eine Routineanwendung am Patienten eine CE-Zertifizierung erforderlich ist, für die im Regelfall eine klinische Prüfung durchgeführt werden muss (siehe auch Kapitel 5.8).


Interessant sind in diesem Zusammenhang auch die mit dem § 137 SGB-V neu geschaffenen Möglichkeiten für die Krankenkassen, sich stärker als bislang möglich an der Finanzierung von klinischen Studien zu beteiligen. Durch sogenannte Erprobsungsstudien sollen Evidenzlücken geschlossen werden, um so eine belastbare Basis für die Entscheidungen des Gemeinsamen Bundesausschusses (G-BA) zur Kostenerstattung neuer Heilmittel durch die GKV zu schaffen. Bislang liegen allerdings noch keine ausreichenden Erfahrungen mit der Verfahrensordnung des G-BA für die Auswahl der Studien sowie mit der Unterstützung solcher Erprobungsstudien durch die Krankenkassen vor. Ob die Erprobungsstudien daher tatsächlich eine verbesserte Studienfinanzierung und damit einen deutlichen Zugewinn wissenschaftlicher Evidenz für die THS bringen werden, kann derzeit nicht abschließend bewertet werden.

5.2 Besonderheiten der klinischen Forschung im Bereich der THS

Die Entwicklung der THS erfolgte bislang weitgehend empirisch, das heißt, Indikationen, Zielpunkt- und Parameterfindung erfolgten nicht auf der Basis tierexperimenteller und grundlagenwissenschaftlicher Daten, sondern aus der klinischen Erfahrung und aus Analogieschlüssen

Dieser klinisch-empirische Zugang wird auch in der Zukunft auf dem Gebiet der THS unumgänglich sein, weil

1) die komplexe Systemphysiologie des menschlichen ZNS nur unzureichend in Tiermodellen abgebildet wird,

2) für viele Gehirnerkrankungen (insbesondere psychiatrische Erkrankungen) nur unzureichende Modelle existieren, welche die komplexen Verhaltenseffekte dieser Therapie am Menschen kaum widerspiegeln können, und

3) der Leidensdruck schwerst betroffener Patientinnen und Patienten ohne Behandlungsalternative oft so groß ist, dass die Therapieoption auch außerhalb zugelassener Behandlungsindikationen weiterentwickelt werden muss.

In der Vergangenheit sind erste Anwendungen der THS in neuen Indikationsbereichen oft im Rahmen der ärztlichen Therapiefreiheit als „individueller Heilversuch“ (Compassionate Use) durchgeführt worden. Auf die Gefahr der missbräuchlichen Anwendung des Heilversuchs zur Durchführung explorativer Studien soll hier ausdrücklich hingewiesen werden: Ein individueller Heilversuch kommt nur in Betracht, wenn eine akut lebensbedrohliche oder schwer behindernde Erkrankung besteht und wenn es im Rahmen des ärztlichen Handelns primär darum geht, einem Individuum oder einer beschränkten Gruppe von Individuen auf dem Wege einer neuartigen Behandlungs methode beziehungsweise unter Anwendung einer Standardbehandlung außerhalb deren üblicher (bzw. zugelassener) Indikation Hilfe zukommen zu lassen. Steht Erkenntnisgewinn für die Wissenschaft im Vordergrund, sind Heilversuch, Off-Label-Use oder Compassionate Use nicht angebracht. Forschung am Patienten erfordert standardisierte Planung in Form eines Studienprotokolls mit festgelegten Ein- und Ausschlusskriterien. Dies ist nur schwer mit einem Heilversuch zu vereinbaren, weil in diesem Fall die individuelle medizinische Indikationsabwägung Grundlage der Behandlung ist. Würden Heilversuche auf mehrere Patienten ausgedehnt und diese dann zu einer „inoffiziellen“, offenen, nicht kontrollierten Stu-
die zusammengefasst, kann dies einen Verstoß gegen das Arzneimittel- beziehungsweise das aktuelle Medizinproduktegesetz und auch das Strafgesetzbuch (Körperverletzung) im Sinne der illegalen Forschung mit Patienten bedeuten.


Klinische Studien mit Medizinprodukten (siehe Kapitel 5.8) haben nicht dieselbe Tradition wie Arzneimittelstudien, die bislang geringeren Zulassungsanforderungen für die CE-Zertifizierung unterliegen. Es ist jedoch damit zu rechnen, dass weltweit die Anforderungen nach dem Vorbild der amerikanischen Food and Drug Administration (FDA) erhöht und standardisiert werden, sodass grundsätzlich dieselben Standards im Studiendesign wie für eine Arzneimittelzulassungsstudie gelten sollten, die nach nationalem und EU-Recht geregelt sind.

Hinzu kommt die Einhaltung anderer Rahmenbedingungen, die für die Durchführung einer klinischen Prüfung im Regelwerk Good Clinical Practice (GCP, DIN ISO 14155) zusammengefasst sind. Die GCP verlangt ein striktes Management von Qualitätskontrolle, Datenarchivierung und unerwünschten Ereignissen sowie ein externes Monitoring. Hierbei sind für die THS einige Besonderheiten zu beachten, weil es sich um eine komplexe Intervention handelt, bei der Behandlungseffekte nicht nur auf eine Variable zurückgeführt werden können. Diese ergeben sich vielmehr aus:

- dem Insertionseffekt der Elektroden (dem sogenannten Mikroläsionseffekt) sowohl im Zielgebiet als auch an Zielstrukturen im Zugangsweg.
- dem Neurostimulationseffekt, der von der Parameterwahl abhängig ist
- THS-assoziierten Änderungen der medikamentösen Therapie
- möglichen krankheitsmodifizierenden Langzeiteffekten

5.3 Insertionseffekt

Es wird üblicherweise davon ausgegangen, dass Insertionseffekte nach einigen Wochen abgeklungen sind und der unstimulierte Zustand der Patientin beziehungsweise des Patienten in etwa der präoperativen Baseline vergleichbar ist. In einer amerikanischen Studie zur STN-Stimulation (Okun et al., 2012), bei der die implantierten Neurostimulationssysteme randomisiert entweder sofort oder erst nach drei Monaten eingeschaltet wurden, zeigten sich in der unstimulierten Kontrollgruppe aber auch nach drei Monaten noch leichte klinische Verbesserungen gegenüber dem Ausgangsbefund. Darüber hinaus war die verbale Fluidität in beiden Gruppen nach der Operation verschlechtert, was auf eine insertionsbedingte Nebenwirkung hinwies. Die Kontrolle des Insertionseffektes macht es erforderlich, in klinischen Studien eine zweite Baseline-Untersuchung postoperativ durchzuführen, bevor das Neurostimulationssystem aktiviert werden kann. Da die genaue Dauer des Mikroläsionseffekts von einer Reihe individueller Faktoren abhängen kann und bislang schlecht untersucht ist, wird man auf der Basis des aktuellen Wissenstands einen Zeitraum etwa zwölf Wochen nach der Operation wählen.

5.4 Neurostimulationseffekt


5.5 Medikamenteneffekte


5.6 Design von randomisierten Studien zum Nachweis der krankheitsmodifizierenden Langzeiteffekte

Die meisten Studien zu klinischen THS-Effekten beziehen sich aus pragmatischen Gründen auf relativ kurze Beobachtungszeiträume von wenigen Monaten. Da aber in aller Regel chronische Erkrankungen behandelt werden, die teilweise progredienter Natur sind, werden Studien benötigt, die (1) die Stabilität der Effekte im Langzeitverlauf bestätigen und (2) mögliche krankheits-


5.7 Vergleich der THS-Effekte mit anderen etablierten Therapieverfahren


Eine andere Option, die Wirkung der THS zu erfassen und zu vergleichen, ist die Einrichtung einer Wartegruppe, das heißt, die Hälfte der Patientinnen und Patienten werden zeitnah zur Operation mit THS stimuliert, während die andere eine gewisse Zeit ohne Stimulation verfolgt wird (bestenfalls doppelt verblindet, in einem sogenannten „staggered“ oder „delayed onset design“).

Auch diese Möglichkeit sollte sorgfältig bei der Studienplanung erwogen werden, da viele Patientinnen und Patienten eine extrem hohe Erwartungshaltung an die Behandlung haben.

5.8 Registrierung und Erfassung von Langzeiteffekten außerhalb klinischer Studien


Auch für Patientinnen und Patienten, die mit THS behandelt wurden, ist es wichtig, eine Grundlage zu schaffen, um die Wirkung dieser neuen Therapieverfahren auf einer breiten Basis zu erfassen und Langzeitverläufe sowohl prospektiv als auch retrospektiv wissenschaftlich auswerten zu können. Dazu sollte ein nationales Register aufgebaut und mit Registern aus anderen Ländern koordiniert werden, um zunächst in Europa und dann weltweit die Erfassung von Daten zu standardisieren. Die Finanzierung eines solchen Patientenregisters ist nicht primäre Aufgabe der Forschungsförderung; hier müssen langfristig tragfähige Lösungen gefunden werden, in die auch die Kostenträger des Gesundheitswesens einbezogen werden.


Wünschenswert wäre es auch, nicht nur krankheitsrelevante Parameter wie im Fall der parkinsonschen Erkrankung den Parkinson’s Disease Questionnaire (PDQ-39) Summary Index oder die Unified Parkinson’s Disease Rating Scale anzuwenden, sondern Testmethoden, die den Vergleich auch mit anderen Indikationsfeldern für die THS zulassen. Solche Testmethoden wurden bisher nicht definiert. Standardisierte neuropsychologische Testbatterien (z. B.


Fazit:

Derzeit fehlen Strukturen für unabhängige Studien- und Patientenregister, und auch die Frage der Finanzierung ist ungeklärt. Da die systematische Erfassung von Effekten der THS über lange Zeiträume nicht nur aus wissenschaftlicher Sicht von großem Interesse ist, sondern auch aus der Perspektive der Versorgung und der Qualitätssicherung klinischer Behandlungen, kann dieser Aspekt nur dann zufriedenstellend gelöst werden, wenn Wissenschaft, Institutionen mit Zuständigkeit für die Qualitätssicherung medizinischer Therapien (Bundesärztekammer) und für die Qualitätssicherung der Krankenversorgung (Bundesministerium für Gesundheit) einschließlich der Krankenkassen in die Etablierung eines solchen Registers eingebunden werden. Die Planungen sollten von Beginn an mit dem Ziel verfolgt werden, solche Register auch international zu vernetzen und für wissenschaftliche Analysen zugänglich zu machen.
6 Anforderungen an Forschungsstrukturen und Forschungsförderung zur Weiterentwicklung der THS

Die THS ist eine Behandlungsmethode, die aus der klinischen Beobachtung entstanden ist, ohne dass die zugrunde liegenden zellulären und molekularen Wirkmechanismen im Einzelnen bekannt und aufgeklärt waren, und auch derzeit weitgehend noch nicht aufgeklärt sind. Für die Weiterentwicklung der THS ist es zum einen notwendig, mit Tiermodellen zu arbeiten, und zum anderen muss versucht werden, über begleitende Beobachtungen und Interventionen am Menschen Erkenntnisse zu gewinnen. Hier ist wichtig, dass Klinische Forschung, elektrophysiologische und bildgebende Forschung, an Tiermodellen arbeitende kliniknahe Forschung und die Grundlagenforschung eng und am besten in strukturierten Forschungsverbünden zusammenarbeiten. Diese Situation erfordert neue Strukturen für die wissenschaftliche Zusammenarbeit von Grundlagenforschung und Klinik, und die Einbeziehung unterschiedlicher klinischer Disziplinen aus dem Neurobereich: von der Neurologie, Neurochirurgie, über die Bildgebung bis zur Psychiatrie und klinischen Neuropsychologie, die wiederum mit neurobiologischen Grundlagenfächern verknüpft werden müssen.

Besonders wichtig für die translationale Forschung ist die Verbindung zu bildgebenden Verfahren. Auch wenn in den letzten Jahren auf diesem Gebiet große Fortschritte erzielt wurden, wird es noch weiterer methodischer Entwicklungen bedürfen, um die Artefakte durch die THS zu eliminieren. Dies ist notwendig, um die Effekte der THS auf die Wirkung komplexer neuronaler Netzwerke aufklären zu können. Weiterhin sollte, wo immer möglich, auch versucht werden, die Applikation der THS zu verbinden mit der Mikrodialyse und mit elektrischen Ableitungen. Auch hier gilt es Artefaktprobleme zu lösen. Die Tiermodelle bieten die Chance, die zellulären und molekularen Mechanismen genauer zu ergründen und vertiefter auf arealsspezifische Unterschiede hinsichtlich der Reaktionen auf die THS einzugehen. Auch gilt es zu klären, welche Tiermodelle sich für die jeweiligen Fragestellungen eignen, und es gilt zu realisieren, dass zur Erforschung dieser Tiermodelle die Entwicklung neuer Methoden, beziehungsweise die Weiterentwicklung vielversprechender Techniken wie die der Optogenetik notwendig sein werden. Gerade die Optogenetik scheint eine reizvolle methodische Alternative darzustellen, zumal sie den Vorteil der Stimulation von definierten neuronalen Populationen bietet (inhibitorisch vs. exzitatorisch sowie hinsichtlich verschiedener Neuromodulatoren) und frei von elektrischen Stimulationsartefakten arbeitet. Darüber hinaus bieten die Tierexperimente die Chance auf chronische Multireal-Ableitungen in regelmäßigen Zeitabständen. Auch würden die Tiermodelle die Chance eröffnen, die Applikationen der THS möglicherweise in Richtung Neuprotektion und Neuroprogenese bei neurodegenerativen Erkrankungen zu explorieren.


Aus diesem Grund wird empfohlen, für die Weiterentwicklung moderner Behandlungsmethoden wie der THS an deutschen Universitätsklinika den Verbund mit Forschungseinrichtungen für krankheitsorientierte Forschung und Grundlagenforschung langfristig zu verstärken und bei der Ausbildung von Studierenden in den Fächern Medizin, Biomedizin, Physik, Materialwissenschaften und Medizintechnik Voraussetzungen zu schaffen, dass eine solche vernetzte klinische Forschung auch in Zukunft möglich ist.
7 Autoren und Mitglieder der AG THS der Senatskommission für Grundsatzfragen der Klinischen Forschung der Deutschen Forschungsgemeinschaft

Herr Professor Dr. Niels Birbaumer  
Eberhard-Karls-Universität Tübingen  
Institut für Medizinische Psychologie und Verhaltensneurobiologie  
Silcherstraße 5  
72076 Tübingen  
E-Mail: niels.birbaumer@uni-tuebingen.de

Herr Professor Dr. Jens Clausen  
Pädagogische Hochschule Freiburg  
Institut für Alltagskultur, Bewegung und Gesundheit  
Fachrichtung Ethik und Lebenswissenschaften und ihre Didaktik  
Kunzenweg 21  
79117 Freiburg  
E-Mail: jens.clausen@ph-freiburg.de

Herr Professor Elmar Doppelfeld  
Lenastraße 15  
50858 Köln  
E-Mail: elmar-doppelfeld@t-online.de

Herr Professor Dr. Hans-Jochen Heinze  
Universitätsklinikum Magdeburg AöR  
Klinik für Neurologie II  
Leipziger Straße 44 / Haus 60 a/ Haus 60 b  
39120 Magdeburg  
E-Mail: hans-jochen.heinze@med.ovgu.de
Herr Professor Dr.-Ing. Hermann Hinrichs  
Universitätsklinikum Magdeburg AöR  
Klinik für Neurologie II  
Leipziger Straße 44  
39120 Magdeburg  
E-Mail: hermann.hinrichs@medizin.uni-magdeburg.de

Herr Professor Dr. Martin Korte  
Technische Universität Braunschweig  
Fakultät für Lebenswissenschaften  
Zoologisches Institut  
Spielmannstraße 7  
38106 Braunschweig  
E-Mail: m.korte@tu-bs.de

Frau Professor Dr. Andrea Kühn  
Charité - Universitätsmedizin Berlin  
Campus Virchow-Klinikum  
Klinik für Neurologie  
Augustenburger Platz 1  
13353 Berlin  
E-Mail: andrea.kuehn@charite.de

Herr Professor Dr. Heinrich Sauer  
Universitätsklinikum Jena  
Standort Innenstadt  
Klinik für Psychiatrie und Psychotherapie  
Philosophenweg 3  
07743 Jena  
E-Mail: heinrich.sauer@med.uni-jena.de
Herr Professor Dr. Thomas Eduard Schläpfer
Universitätsklinikum Freiburg
Klinik für Psychiatrie und Psychotherapie
Abteilung für Interventionelle Biologische Psychiatrie
Breisacher Straße 64
79106 Freiburg
E-Mail: thomas.schlaepfer@uniklinik-freiburg.de

Herr Professor Dr. Michael A. Sendtner
Universitätsklinikum Würzburg
Institut für Klinische Neurobiologie
Versbacher Straße 5
97078 Würzburg
E-Mail: sendtner_m@ukw.de

Herr Professor Dr. Tade Matthias Spranger
Rheinische Friedrich-Wilhelms-Universität Bonn
Institut für Wissenschaft und Ethik
Bonner Talweg 57
53113 Bonn
E-Mail: spranger@iwe.uni-bonn.de

Herr Professor Dr. Lars Timmermann
Universitätsklinikum Gießen und Marburg GmbH
Standort Marburg
Klinik für Neurologie
Baldingerstraße
35043 Marburg
E-Mail: lars.timmermann@uk-gm.de
Herr Professor Dr. Jürgen Voges
Universitätsklinikum Magdeburg AöR
Klinik für Stereotaktische Neurochirurgie
Leipziger Straße 44 39120 Magdeburg
E-Mail: juergen.voges@med.ovgu.de

Herr Professor Dr. Jens Volkmann
Universitätsklinikum Würzburg
Neurologische Klinik und Poliklinik
und Institut für Klinische Neurobiologie
Josef-Schneider-Straße 11
E-Mail: volkmann_j@klinik.uni-wuerzburg.de

Frau Professor Dr. Christiane Woopen
Uniklinik Köln
Institut für Geschichte und Ethik der Medizin
Joseph-Stelzmann-Straße 20
50931 Köln
E-Mail: christiane.woopen@uni-koeln.de

Von der Geschäftsstelle der DFG:

Frau Dr. Theodora Hogenkamp
Deutsche Forschungsgemeinschaft
Kennedyallee 40
53175 Bonn
E-Mail: theodora.hogenkamp@dfg.de
8 Annex zur THS-Stellungnahme


Die Stellungnahme wurde von einer Arbeitsgruppe der Ständigen Senatskommission für Grundsatzfragen in der Klinischen Forschung erstellt, die interdisziplinär zusammengesetzt war, um dieses Thema in der notwendigen Breite bearbeiten zu können. Mitglieder der Arbeitsgruppe waren dabei auch Wissenschaftlerinnen und Wissenschaftler, bei denen potenzielle individuelle oder institutionelle Interessenkonflikte bestehen, die aber gleichzeitig eine besondere fachliche Expertise in die Arbeitsgruppe einbringen konnten.

Die Ständige Senatskommission für Grundsatzfragen in der Klinischen Forschung hat sich in der Abwägung, den Anschein möglicher Interessenkonflikte zu vermeiden, und der Möglichkeit, eine fachlich hochspezialisierte Stellungnahme zu erarbeiten, bewusst dafür entschieden, diese Personen als Mitglieder der Arbeitsgruppe einzubeziehen.

9 Offenlegung möglicher Interessenkonflikte der Mitglieder der AG THS der Senatskommission für Grundsatzfragen in der Klinischen Forschung der Deutschen Forschungsgemeinschaft

Die Geschäftsstelle der Deutschen Forschungsgemeinschaft (DFG) hat die Mitglieder der Arbeitsgruppe mit folgender Anfrage um die Offenlegung möglicher Interessenkonflikte gebeten:


Die DFG legt größten Wert darauf, transparent darzustellen, zu wem evtl. Geschäftsbeziehungen unterhalten werden oder andere Verpflichtungen bestehen, die evtl. einen Interessenkonflikt bedingen könnten.“

Eingegangene Antworten:

Prof. Dr. Niels Birbaumer
Keine Interessenkonflikte

Prof. Dr. Jens Clausen
Keine Interessenkonflikte

Prof. Dr. Elmar Doppelfeld
Keine Interessenkonflikte

Prof. Dr. Hans-Jochen Heinze
Keine Interessenkonflikte
Offenlegung möglicher Interessenkonflikte der Mitglieder der AG THS

Prof. Dr. Hermann Hinrichs
Keine Interessenkonflikte

Prof. Dr. Martin Korte
Keine Interessenkonflikte

Prof. Dr. Andrea Kühn

Prof. Dr. Heinrich Sauer
Keine Interessenkonflikte

Prof. Thomas Eduard Schlápfer

Prof. Dr. Michael A. Sendtner
Keine Interessenkonflikte

Prof. Tade Matthias Spranger
Keine Interessenkonflikte
Prof. Dr. Lars Timmermann
Prof. Timmermann hat Honorare als Berater von Medtronic Inc., Boston Scientific, SAPIENS, St. Jude Medical, GE Medical, Bayer Healthcare, UCB Schwarz Pharma, Archimedes Pharma erhalten. Er hat Honorare als Redner auf Symposien erhalten, die unter anderem gesponsert waren von Biogene, Zambon Pharma, TEVA Pharma, Lundbeck Pharma, Bracco, Gianni PR, Medas Pharma, UCB Schwarz Pharma, Desitin Pharma, Boehringer Ingelheim, GlaxoSmithKline, Eumecom, Orion Pharma, Medtronic, Boston Scientific, Cephalon, Abott, GE Medical, Archimedes, Bayer, ProsStrakan Pharma. Die Institution von Prof. Timmermann, nicht er persönlich, hat Drittmittel eingenommen von der DFG, dem Deutschen Ministerium für Bildung und Forschung, der Manfred und Ursula Müller Stiftung, der Klüh Stiftung, Hoffnungsbau e. V., NBIA DISORDERS SOCIETY USA, Köln Fortune, Medtronic, der Deutschen Parkinson Vereinigung, Archimedes Pharma, Abott, Bayer, UCB, Rose Pharma, TEVA. Weder Prof. Timmermann noch direkte Familienangehörige haben Aktien, Aktienoptionen, Patente oder finanzielle Interessen/Beteiligungen von/an einer der oben gelisteten Firmen oder deren Wettbewerber.

Prof. Dr. Jürgen Voges
DFG: SFB 779 (TP A11), Förderperiode: 2012–2015 KU 830/10-1KFO 247 (TP 9); Förderperiode: 2013
Gelegentlich Honoraria von: Medtronic, St. Jude Medical und Inomed

Prof. Dr. Jens Volkmann
Prof. Volkmann erhält Forschungsunterstützung von Boston Scientific und Medtronic und ist Mitglied von Advisory Boards dieser beiden Firmen.

Prof. Dr. Christiane Woopen
10 Literatur


11 Note Added in Proof

In der Zwischenzeit ergeben sich im Bereich der Tiefen Hirnstimulation neue Aspekte, die in dieser Anmerkung kurz erwähnt werden sollen. Zwei multizentrische randomisierte Studien, der BROADEN-Trial (subgenuales Zingulum) sowie die Medtronics’ VC DBS Study (ventrales Striatum), wurden wegen mangelndem Wirknachweis (futility) abgebrochen (1). Im präklinischen Bereich besteht neben der Optogenetik zunehmendes Interesse an der Verwendung von synthetischen Rezeptoren (DREADDs – Designer Receptors Exclusively Activated by Designer Drugs) zur gezielten Stimulation bestimmter Neuronenpopulationen (2).


12 Abkürzungsverzeichnis und Glossar

6-OHDA  6-Hydroxidopamin. Eine neurotoxische Substanz, mit der dopaminerge und
noradrenerge Nervenzellen selektiv geschädigt werden. Kann beim Menschen
und bei anderen Spezies parkinsonähnliche Krankheitssymptome auslösen.

ALIC  Vorderer Schenkel der Capsula interna, einer Hirnstruktur mit Faserbündeln vom
Thalamus zum Frontalhirn und Fasern vom Frontallappen in tiefere Hirnregionen.

ANPs  Amplifying neural progenitor cells. Eine Gruppe von Nervenzellvorläuferzellen,
die teilungsfähig sind und aus denen neue Nervenzellen im Gyrus dentatus des
Hippocampus entstehen können.

ATN  Anteriorer Kern des Thalamus.

BDNF  Brain-derived neurotrophic factor. Ein Protein und Signal molekül, das Plastizität
von synaptischen Verbindungen reguliert.

BfArM  Bundesinstitut für Arzneimittel und Medizinprodukte.

CANTAB  Cambridge Neuropsychological Test Automated Battery. Eine Sammlung stan-
dardisierter psychologischer Testverfahren für kognitive Funktionen, verschiedene
Formen von Gedächtnis, Aufmerksamkeit, und für Entscheidungsprozesse.


cGMP  Cyclisches Guanosinmonophosphat. Ein chemischer Botenstoff, der für die
Weiterleitung von Signalen in Nervenzellen verantwortlich ist.

CK  Clusterkopfschmerz.

CMPF  Parafaszikulärer thalamischer Komplex. Diese Hirnstruktur ist mit dem Thalamus
organisatorisch und funktionell verbunden und enthält Verbindungen aus dem
Mittelhirn zum Thalamus. Diese Region ist bei der parkinsonschen Erkrankung
und anderen Erkrankungen mit Bewegungsstörungen degenerativ verändert.

CT  Computertomogramm. Bildgebendes Verfahren zur Darstellung von Strukturen
im Gehirn und in anderen Organen.

CT  Computertomografie. Bildgebendes Verfahren zur Darstellung von Strukturen
im Gehirn und in anderen Organen.

DIMDI  Deutsches Institut für Medizinische Dokumentation und Information.
Abkürzungsverzeichnis und Glossar

DMSB  Data Management Safety Board.


DRKS  Deutsches Register für Klinische Studien.


EC  Entorhinalen Kortex. Eine Region in der Hirnrinde, die Nervenzellen enthält, die zum Hippocampus projizieren. Diese Region im Temporallappen des Gehirns hat eine wichtige Funktion bei Gedächtnisprozessen und Prozessen zur räumlichen Orientierung.

FDA  Food and Drug Administration. Eine amerikanische Bundesbehörde mit Zuständigkeit auch für die Zulassung von Arzneimitteln.

GCP  Good Clinical Practice. Ein international anerkanntes, nach ethischen und wissenschaftlichen Gesichtspunkten aufgestelltes Regelwerk zur Durchführung klinischer Studien. Das zentrale Anliegen ist der Schutz der Studienteilnehmer und deren informierte Einwilligung sowie die Sicherung der Qualität der Studiergebnisse.

GPe  Globus pallidus externus. Eine Hirnregion, die den Basalganglien zugeordnet wird. Diese Region enthält Nervenzellen, die bei der Steuerung motorischer Bewegungen bewegungsfördernd wirken (Seite 25, Abbildung 3).

GPi  Globus pallidus internus. Eine Hirnregion, die den Basalganglien zugeordnet wird. Diese Region enthält Nervenzellen, die bei der Steuerung motorischer Bewegungen bewegungshemmend wirken (Seite 25, Abbildung 3).

HF-THS  Hochfrequente Tiefe Hirnstimulation. An die stereotaktisch positionierten Elektroden wird eine hochfrequente (ca. 120–180 Hz) gepulste (ca. 100 ms Dauer) Spannung (ca. 1,5 V) angelegt.

ICB  Intracerebral bleeds. Hirnblutungen.
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPG</td>
<td>Internalisierter Pulsgeber. Das implantierte Steuergerät für die Tiefe Hirnstimulation.</td>
</tr>
<tr>
<td>IPS</td>
<td>Idiopathisches Parkinsonsyndrom.</td>
</tr>
<tr>
<td>L-Dopa</td>
<td>L-3,4-Dihydroxyphenylalanin. Eine Vorstufe für die Neurotransmitter Dopamin und Noradrenalin. Als Arzneimittel wird die Substanz zur Behandlung der parkinsonschen Erkrankung eingesetzt.</td>
</tr>
<tr>
<td>LFP</td>
<td>Lokale Feldpotenziale. Messbare elektrische Potenziale, die aufgrund neuronaler Aktivität in Hirnstrukturen entstehen.</td>
</tr>
<tr>
<td>MPG</td>
<td>Medizinproduktegesetz.</td>
</tr>
<tr>
<td>mVB</td>
<td>Mediale Vorderhirnbündel. Fasertrakt in der lateralen Zone des Hypothalamus. Verbindet verschiedene Bereiche des Gehirns, mit Projektionen aus dem Hypothalamus und anderen tiefen Hirnregionen zum frontalen Cortex.</td>
</tr>
<tr>
<td>NIMH</td>
<td>National Institute of Mental Health. Zentrales staatliches Forschungsinstitut der USA für psychiatrische Erkrankungen.</td>
</tr>
<tr>
<td>PET</td>
<td>Positronen-Emissionstomografie. Bildgebendes Verfahren, mit dem Stoffwechselvorgänge im Gehirn und in anderen Organen dargestellt werden können.</td>
</tr>
<tr>
<td>PKAN</td>
<td>Pantothenate kinase-associated neurodegeneration. Eine autosomal rezessiv vererbte, neurodegenerative Erkrankung mit Eisenablagerungen im Gehirn, die sich bereits in der Kindheit manifestiert. Symptome der Erkrankung sind Bewegungsstörungen (Dystonie), Spastik, Sprachstörungen (Dysarthrie), Tremor und Demenz.</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>PPN</td>
<td>Pedunculopontine Nucleus. Eine Struktur im Hirnstamm und wichtige Komponente des retikulären aktivierenden Systems, das mit weiten Bereichen des Gehirns über Nervenzellfortsätze verbunden ist, und an komplexen Prozessen wie der Regulation der Aufmerksamkeit und bei Bewegungsinitiation steuernd beteiligt ist.</td>
</tr>
<tr>
<td>PROMMs</td>
<td>Patient reported outcome measurements.</td>
</tr>
<tr>
<td>SGZ</td>
<td>Subgranulären Zone des Gyrus dentatus im Hippocampus. Eine Hirnregion, in der auch noch im Erwachsenenalter neue Nervenzellen entstehen, die in neuronale Schaltkreise funktionell integriert werden.</td>
</tr>
<tr>
<td>SKID</td>
<td>Strukturiertes Klinisches Interview für DSM-IV. Verfahren zur Diagnostik psychischer Störungen nach dem Diagnosemanual DSM-IV.</td>
</tr>
<tr>
<td>SN</td>
<td>Substantia nigra, eine Hirnstruktur im Mittelhirn, die dopaminerge Neurone enthält, die in andere Hirnregionen – vor allem in das Striatum – projizieren. Diese dopaminergen Neuronen degenerieren bei der parkinsonschen Erkrankung (Seite 24, Abbildung 2).</td>
</tr>
<tr>
<td>STN</td>
<td>Nucleus subthalamicus. Eine Hirnstruktur, die bei der Therapie der parkinsonschen Erkrankung mit tiefer Hirnstimulation (Seite 24, Abbildung 2) häufig stimuliert wird.</td>
</tr>
<tr>
<td>THS</td>
<td>Tiefe Hirnstimulation.</td>
</tr>
</tbody>
</table>