Zur Hauptnavigation springen Direkt zum Inhalt springen

Logo: Deutsche Forschungsgemeinschaft (DFG) - zur Startseite Deutsche Forschungsgemeinschaft

Information für die Wissenschaft Nr. 60 | 16. November 2011
Priority Programme “Caloric Effects in Ferroic Materials: New Concepts for Cooling” (SPP 1599)

The Senate of the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) has announced the establishment of a new Priority Programme entitled “Caloric Effects in Ferroic Materials: New Concepts for Cooling”. The programme is designed to run for six years.

Refrigeration is one of the main sinks of electric energy in Germany and Europe and accordingly contributes to worldwide CO2 emissions. High reduction potentials are envisaged if caloric effects in solid materials are utilised. The recent discovery of e.g. giant entropy changes associated with ferroic phase transformations promises higher efficiency. Ferroic transitions enhance the entropy change of magneto-, elasto-, baro- and electro-caloric effects. Furthermore, because the refrigerant is in a solid state, the technology completely eliminates the need for high global-warming potential halofluorocarbon refrigerants. The smaller footprint for operation and the scalable mechanism open up further applications such as cooling of microsystems.

The Priority Programme SPP 1599 will address the following major challenges for introducing ferroic materials in practical cooling applications: understanding of the underlying mechanisms, energy efficiency, effect size, fatigue, and system integration.

Projects proposals are required to cover one of the following “ferroic-caloric” material classes or combinations thereof: ferroelastic, ferromagnetic and ferroelectric materials. Proposals have to focus on basic or applied aspects of solid-state cooling processes.

In detail, the research programme of the Priority Programme will focus on four key problems related to ferroic cooling:

  • Which scheme is most efficient for solid state refrigeration? Giant caloric effects occur only in the vicinity of a first order transformation. For comparison experiments should focus on the direct adiabatic temperature change and cooling efficiency.

  • Which length and time scales are involved? Diffusionless transformations change the structure at the atomic scale. However, in real materials, the hysteretic transformation process creates complex microstructures spanning many length scales up to the macroscale. To understand hysteresis losses, collaborations should cover several length scales, consider coupling effects (thermo-mechanic-magnetic-electric) and, in particular, use suitable in-situ methods.

  • Which are the best materials and microstructures? Solid state cooling does not only require a maximised entropy change but also heat capacity and conductivity contribute to the cooling power. Hysteresis losses and fatigue, which are critical due to the high cycle numbers required for cooling demonstrators, should be addressed. Research should centre on environmentally friendly materials.

  • Which are competitive device concepts? The development of novel solid state cooling demonstrators is essential for the adaption of ferroic-caloric materials. Proposals should work out the advantage of the selected setup and consider the effort for the entire refrigeration system.

The complexity of ferroic cooling requires a close collaboration of materials scientists, engineers, physicists and mathematicians. The aim of this Priority Programme is to bring groups from these disciplines together to combine their complementary expertise from basic research to application. Therefore joint proposals or bundles of proposals are encouraged. The number of principal investigators should reflect the complementary scientific expertise needed for the proposed research. These proposals should aim at a comprehensive assessment of efficiency of solid-state refrigeration, addressing the route from materials fundamentals to demonstrators. Proposals addressing methodological aspects relevant for understanding solid-state refrigeration must give detailed plans for bilateral cooperation with particular partners.

Proposals considering liquid/gaseous or thermoelectric refrigerants or focussing on actuation/ sensor applications alone will not be funded. Also, concepts which aim on electric power generation will not be considered.

Proposals for the initial three-year funding period should be submitted in English as PDF files on CD-ROM no later than 9 March 2012. Submissions, marked as “SPP 1599/1”, should be addressed to Deutsche Forschungsgemeinschaft, Dr. Burkhard Jahnen, 53170 Bonn. A colloquium and the review panel meeting are planned for early summer 2012. The first funding period will start in late 2012.

Further information

General information (guideline 50.05 and proposal preparation instructions 54.01) is available at:

For scientific enquiries concerning the scope of the programme, please contact the Priority Programme's coordinator:

For administrative enquiries please contact:

  • Dr.-Ing. Burkhard Jahnen
    Deutsche Forschungsgemeinschaft
    53170 Bonn
    phone +49 228 885-2487
    burkhard.jahnen@dfg.de

© 2010-2017 by DFG
Ausdruck aus dem Angebot der DFG (Deutsche Forschungsgemeinschaft)